Andy Jessup Senior Principal Oceanographer Professor, Civil and Environmental Engineering and Affiliate Associate Professor, Mechanical Engineering jessup@uw.edu Phone 206-685-2609 |
Research Interests
Air-Sea Interaction, Remote Sensing
Biosketch
Dr. Jessup joined APL-UW as a research scientist in 1990 after receiving his Ph.D. in Oceanography and Ocean Engineering from the MIT/WHOI Joint Program. He began a program in air-sea interaction using infrared techniques that has led to a wide variety of field and laboratory investigations.
His recent interests include remote sensing of river inlets and the infrared signature of breaking waves relevant to wake detection. He is Chair of the Air-Sea Interaction and Remote Sensing Department and a Professor in Civil and Environmental Engineering.
Department Affiliation
Air-Sea Interaction & Remote Sensing |
Education
B.S.E. Engineering Science, University of Michigan, 1980
M.S.E. Civil Engineering, Massachusetts Institute of Technology, 1988
Ph.D. Oceanography & Ocean Engineering, MIT and WHOI Joint Program, 1990
Projects
Salinity Processes in the Upper Ocean Regional Study SPURS The NASA SPURS research effort is actively addressing the essential role of the ocean in the global water cycle by measuring salinity and accumulating other data to improve our basic understanding of the ocean's water cycle and its ties to climate. |
15 Apr 2015
|
Skin and Bulk Sea Surface Temperature Validation Program There is a growing consensus that sea surface temperature (SST) products derived from satellite-based infrared (IR) sensors should include ocean skin temperature. To validate satellite-based measurements of skin temperature, widespread, in situ data are required. |
|
Fluxes, Air-Sea Interaction, and Remote Sensing (FAIRS) Experiment The transfer of momentum, heat, and gas across the air-sea boundary is characterized and quantified by measuring the underlying physical mechanisms with remote sensing instruments. |
|
COHerent STructures in Rivers and Estuaries eXperiment The experiment is a four-year collaborative project that couples state-of-the-art remote sensing and in situ measurements with advanced numerical modeling to characterize coherent structures in river and estuarine flows. |
More Info |
|
|||||||
Coherent structures are generated in rivers and estuaries when the flow interacts with bathymetric and coastline features or when density stratification causes a gradient in surface properties. These coherent structures produce surface signatures that can be detected and quantified using remote sensing techniques. A second objective of this project is to determine the extent to which these remotely sensed signatures can be used to initialize and guide predictive models. |
Wave Dissipation and the Distribution of Breaking Crests The energy dissipation of breaking waves is quantified using simultaneous remote and in situ measurements. |
|
Videos
IRISS InfraRed In situ Skin and Subskin Experiments Infrared radiometers are used to take the temperature of the very surface of the ocean. In this project 'gold standard' radiometers used to measure the ocean skin temperature are compared alongside simplified and miniaturized infrared systems. The goal is to deploy these small, lightweight, and comparatively inexpensive sensing systems on uncrewed surface vehicles to increase data coverage of the global ocean. |
12 Oct 2021
|
NASA Expedition Measures the Salty Seas Chief Scientist Andy Jessup and a multi-institutional team of researchers embarked on an expedition to the tropical Pacific Ocean in early August 2016. |
More Info |
19 Aug 2016
|
|||||||
The team is measuring near-surface ocean salinity and the atmospheric and oceanic dynamics that control it. For their part, researchers from APL-UW’s Air-Sea Interactions and Remote Sensing Department are using several platforms on the R/V Revelle to measure the ocean’s response to freshwater input during and immediately after intense bursts of rainfall that are typical of the eastern tropical Pacific Ocean |
DARLA: Data Assimilation and Remote Sensing for Littoral Applications Investigators completed a series of experiments in April 2013 at the mouth of the Columbia River, where they collected data using drifting and airborne platforms. DARLA's remote sensing data will be used to drive representations of the wave, circulation, and bathymetry fields in complex near-shore environments. |
5 Dec 2013
|
Publications |
2000-present and while at APL-UW |
Laboratory heat flux estimates of seawater foam for low wind speeds Chickadel, C.C., R. Branch, W.E. Asher, and A.T. Jessup, "Laboratory heat flux estimates of seawater foam for low wind speeds," Remote Sens., 14, doi:10.3390/rs14081925, 2022. |
More Info |
15 Apr 2022 |
|||||||
Laboratory experiments were conducted to measure the heat flux from seafoam continuously generated in natural seawater. Using a control volume technique, heat flux was calculated from foam and foam-free surfaces as a function of ambient humidity (ranged from 40% to 78%), airwater temperature difference (ranged from 9°C to 0°C), and wind speed (variable up to 3 m s-1). Water-surface skin temperature was imaged with a calibrated thermal infrared camera, and near-surface temperature profiles in the air, water, and foam were recorded. Net heat flux from foam surfaces increased with increasing wind speed and was shown to be up to four times greater than a foam-free surface. The fraction of the total heat flux due to the latent heat flux was observed for foam to be 0.75, with this value being relatively constant with wind speed. In contrast, for a foam-free surface the fraction of the total heat flux due to the latent heat flux decreased at higher wind speeds. Temperature profiles through foam are linear and have larger gradients, which increased with wind speed, while foam free surfaces show the expected logarithmic profile and show no variation with temperature. The radiometric surface temperatures show that foam is cooler and more variable than a foam-free surface, and bubble-resolving thermal images show that radiometrically transparent bubble caps and burst bubbles reveal warm foam below the cool surface layer, contributing to the enhanced variability. |
Surface turbulence reveals riverbed drag coefficient Branch, R.A., A.R. Horner-Devine, C.C. Chickadel, S.A. Talke, D. Clark, and A.T. Jessup, "Surface turbulence reveals riverbed drag coefficient," Geophys. Res. Lett., 48, doi:10.1029/2020GL092326, 2021. |
More Info |
28 May 2021 |
|||||||
Flow in rivers and the coastal ocean is controlled by the frictional force exerted on the water by riverbed or seabed roughness. The frictional force is typically characterized by a drag coefficient Cd, which is estimated from bulk measurements and often assumed constant. Here, we demonstrate a relationship between bed roughness and water surface turbulence that can be used to make remote estimates of CdCd, and validate this relationship by comparing remotely sensed estimates of Cd to those from in situ measurements. Thus, our results provide an approach for estimating bottom roughness and Cd based entirely on remotely sensed data, including their spatial variability, which can improve modeling of river discharge and morphodynamics in data-poor regions. |
Surf zone waves at the onset of breaking: 1. LIDAR and IR data fusion methods Carini, R.J., C.C. Chickadel, and A.T. Jessup, "Surf zone waves at the onset of breaking: 1. LIDAR and IR data fusion methods," J. Geophys. Res., 126, doi:10.1029/2020JC016934, 2021. |
More Info |
1 Apr 2021 |
|||||||
This is the first of a 2‐part series concerning remote observation and wave‐by‐wave analysis of the onset of breaking in the surf zone. In the surf zone, breaking waves drive nearshore circulation, suspend sediment, and promote airsea gas exchange. Nearshore wave model predictions often diverge from in situ measurements near the break point location because common parameterizations do not account for the rapid changes that occur near the onset of breaking. This work presents extensive methodology to combine data from a line‐scanning LIDAR and thermal infrared cameras to detect breaking, classify breaker type, and measure geometric wave parameters on a wave‐by‐wave basis, which can be used to improve breaker parameterizations. Over 2,600 non‐breaking and 1,600 breaking waves are analyzed from data collected at the USACE Field Research Facility in Duck, NC, including 413 spilling and 111 plunging waves for which the onset of breaking was observed. Wave height is estimated using a spatio‐temporal method for wave tracking that preserves the sea surface elevation maximum and overcomes field of view limitations. Methods for estimating instantaneous wave speed are refined by fitting a skewed Gaussian function to each wave profile before tracking the peaks. Wave slope is estimated from a linear fit to the upper 80% of the wave face, which provides a robust metric and strong correlation with geometric wave slope defined relative to mean sea level. Finally, breaking wave face foam coverage is analyzed to assess common model assumptions about roller length for wave energy dissipation parameterizations. |
Surf zone waves at the onset of breaking: 2. Predicting breaking and breaker type Carini, R.J., C.C. Chickadel, and A.T. Jessup, "Surf zone waves at the onset of breaking: 2. Predicting breaking and breaker type," J. Geophys. Res., 126, doi:10.1029/2020JC016935, 2021. |
More Info |
1 Apr 2021 |
|||||||
This is the second of a two‐part series concerning remote observation and wave‐by‐wave analysis of the onset of breaking for spilling and plunging waves in the surf zone. Nearshore phase‐averaged and phase‐resolving wave models parameterize and directly simulate wave breaking and require realistic critical values of key wave parameters, such as the depth‐limited breaking index γ, steepness, or phase speed to initialize wave breaking. Using LIDAR line‐scans and infrared imagery, we observe over 1,600 breaking waves at the US Army Corps of Engineers Field Research Facility (FRF) in Duck, NC, and examine these parameters on a wave‐by‐wave basis at the onset of breaking for 413 spilling and 111 plunging waves. We find that γ is maximum near the onset of breaking at values consistent with those previously observed at the FRF, but that γ for plunging waves (0.73 ≤ γP ≤ 0.81) is greater than γ for spilling waves (0.63 ≤ γS ≤ 0.71). Direct estimates of wave face slope are maximum at the onset of breaking, approximately 22° for spilling and 30° for plunging waves. Using the relationship between γ and wave face slope, we develop a threshold for the onset of breaking that is a linear function of the two parameters. Wave face slope and γ are further used together to quantify whether a spilling‐ or plunging‐type breaker is more likely. We test the Miche steepness limit on our depth‐limited breaking data and find it correctly predicts only 10% of the plunging breakers and none of the spilling breakers in the surf zone. |
On the thermal signature of the residual foam in breaking waves Masnadi, N., C.C. Chickadel, and A.T. Jessup, "On the thermal signature of the residual foam in breaking waves," J. Geophys. Res., 126, doi:10.1029/2020JC016511, 2021. |
More Info |
18 Jan 2021 |
|||||||
Quantifying energy dissipation due to wave breaking remains an essential but elusive goal for studying and modeling air‐sea fluxes of heat, gas, and momentum. Previous observations have shown that lifetimes of bubble plumes and surface foam are directly related to the dissipated energy. Specifically, the foam decay time can be used to estimate the timescale of the subsurface bubble plume and the energy dissipated in the breaking process. A mitigating factor is that the foam decay time can be significantly affected by the surfactant concentration. Here we present an experimental investigation of a new technique that exploits the thermal signature of cooling foam to infer wave breaking dynamics. The experiments were conducted in a laboratory wave tank using artificial seawater with and without the addition of a surfactant. We show that the time from the start of the breaking process to the onset of cooling scales with the bubble plume decay time and the dissipated energy, and is not significantly affected by the presence of additional surfactants. We confirm observations from the field of the spatial variability of the temperature of foam generated by an individual breaking event, which has implications for inferring the spatial variability of bubble plume depth. |
Estimating rain-generated turbulence at the ocean surface using the active controlled flux technique Asher, W.E., K. Drushka, A.T. Jessup, E.J. Thompson, and D. Clark, "Estimating rain-generated turbulence at the ocean surface using the active controlled flux technique," Oceanography, 32, 108-115, doi:10.5670/oceanog.2019.218, 2019. |
More Info |
14 Jun 2019 |
|||||||
Rain-generated lenses of fresher water at the ocean surface affect satellite remote sensing of salinity, mixed-layer dynamics, and air-sea exchange of heat, momentum, and gases. Understanding how rain and wind generate turbulence at the ocean surface is important in modeling the generation and evolution of these fresh lenses. This paper discusses the use of the active controlled flux technique (ACFT) to determine relative levels of turbulence in the top centimeter of the ocean surface in the presence of rain. ACFT measurements were made during the 2016 second Salinity Processes in the Upper-ocean Regional Study (SPURS-2) in the eastern equatorial Pacific Ocean. The data show that at wind speeds below 4 m s-1, the turbulence dissipation rate at the ocean surface (as parameterized by the water-side surface renewal time constant) is correlated with the instantaneous rain rate. However, at higher wind speeds, the wind stress dominates turbulence production and rain is not a significant source of turbulence. There is also evidence that internal waves can be a significant source of turbulence at the ocean surface under non-raining conditions when a diurnal warm layer is present. |
High-resolution rain maps from an X-band marine radar and their use in understanding ocean freshening Thompson, E.J., W.E. Asher, A.T. Jessup, and K. Drushka, "High-resolution rain maps from an X-band marine radar and their use in understanding ocean freshening," Oceanography, 32, 58-65, doi:10.5670/oceanog.2019.213, 2019. |
More Info |
14 Jun 2019 |
|||||||
Ship-based X-band radar observations of rain were collected with high spatial resolution during the 2016 and 2017 Salinity Processes in the Upper-ocean Regional Study 2 (SPURS-2) field experiments in the eastern tropical Pacific Ocean. These observations were collected with a repurposed marine radar that is not typically used for weather monitoring. The radar images captured during SPURS-2 show the spatial extent and variable intensity of rain at a horizontal resolution of 180 m within 30 km of the ship. When analyzed alongside collocated measurements of oceanic and atmospheric properties collected during SPURS-2, the radar-derived rain maps enable a clearer understanding of the impact of spatially and temporally varying freshwater fluxes on ocean salinity. Ocean surface freshening, measured by ship gauges, is found to be affected by local rain accumulation, and also by prior rain accumulation in surrounding locations that was measured by radar. In one example, the X-band marine radar measured rain directly ahead of the ship’s path. The ship then sampled a near-surface freshening signature within the time period expected based on the ship speed, ship heading, and rain area measured by the radar. |
Capturing fresh layers with the surface salinity profiler Drushka, K., A.E. Asher, A.T. Jessup, E.J. Thompson, S. Iyer, and D. Clark, "Capturing fresh layers with the surface salinity profiler," Oceanography, 32, 76-85, doi:10.5670/oceanog.2019.215, 2019. |
More Info |
11 Jun 2019 |
|||||||
During the second Salinity Processes in the Upper-ocean Regional Study (SPURS-2) field experiments in 2016 and 2017 in the eastern tropical Pacific Ocean, the surface salinity profiler (SSP) measured temperature and salinity profiles in the upper 1.1 m of the ocean. The SSP captured the response of the ocean surface to 35 rain events, providing insight into the generation and evolution of rain-formed fresh layers. This paper describes the measurements made with the SSP during SPURS-2 and quantifies the fresh layers in terms of their vertical salinity gradients between 0.05 m and 1.1 m, ΔS1.1 - 0.05 m. For the 35 rain events sampled with the SSP in 2016 and 2017, the maximum value of ΔS1.1 - 0.05 m is well correlated with the accumulated rainfall. The maximum value of ΔS1.1 - 0.05 m is shown to be linearly proportional to the maximum rain rate and inversely proportional to the wind speed. This wind speed-dependent relationship shows a high degree of scatter, reflecting that the vertical salinity gradient formed during any individual rain event depends on the complex interaction between the local ocean dynamics and the highly variable forcing from rain and wind. |
Satellite observations of SST-induced wind speed perturbation at the oceanic submesoscale Gaube, P., C.C. Chickadel, R. Branch, and A. Jessup, "Satellite observations of SST-induced wind speed perturbation at the oceanic submesoscale," Geophys. Res. Lett., 46, 2690-2695, doi:10.1029/2018GL080807, 2019. |
More Info |
16 Mar 2019 |
|||||||
Sea Surface Temperature (SST) modifies the turbulent mixing, drag, and pressure gradients within the marine atmospheric boundary layer that accelerate near‐surface flow from cool to warm SST and decelerate the flow from warm to cool SST. This phenomenon is well documented on scales of 1001,000 km (the oceanic mesoscale); however, the nature of this airsea coupling at scales on the order of 110 km (the submesoscale) remains unknown. The Advanced Spaceborne Thermal Emission and Reflection Radiometer can be used to study submesoscale phenomena because the high‐resolution infrared and near‐infrared images can used to estimate both SST and wind speed. Observations of dramatic temperature and wind gradients along the Gulf Stream landward edge are used to examine the surface wind response to submesoscale fronts in SST. Our analysis indicates that SST‐induced wind speed perturbations are observed at the scales of order 110 km, significantly smaller than previously suggested. |
Small boat detection with along-track interferometric SAR Balaban, M., A. Kovorotniy, Y. Goncharenko, V. Gorobets, F. Kivva, G. Farquharson, and A. Jessup, "Small boat detection with along-track interferometric SAR," IEEE Radar Conference, 8-12 May, Seattle, WA, doi:10.1109/RADAR.2017.7944356 (IEEE, 2017). |
More Info |
8 May 2017 |
|||||||
Along-track interferometric synthetic aperture radar measurements of a small fiberglass-hull boat were made in various wind and wave conditions and for different measurement geometries and boat speeds. The data collected show three different cases: 1) the boat signature is visible both in the backscattered power and interferometric phase images; 2) the boat signature is visible only in the interferometric phase image, and 3) the boat signature is not visible in either image. From a preliminary analysis of the data, we conclude that the angle between radar look direction and the nominal velocity vector of the boat significantly affects boat detection. The worst cases for detection are when those vectors are collinear or oppositely directed. The best detection cases appear to be for the case, when boat velocity vector and radar look direction are orthogonal or when the boat is stationary. |
Remote measurements of tides and river slope using an airborne Lidar instrument Hudson, A.S., S.A. Talke, R. Branch, C. Chickadel, G. Farquharson, and A. Jessup, "Remote measurements of tides and river slope using an airborne Lidar instrument," J. Atmos.Ocean.Technol., 34, 897–904, doi:10.1175/JTECH-D-16-0197.1, 2017. |
More Info |
24 Apr 2017 |
|||||||
Tides and river slope are fundamental characteristics of estuaries, but they are usually undersampled due to deficiencies in the spatial coverage of water level measurements. This study aims to address this issue by investigating the use of airborne lidar measurements to study tidal statistics and river slope in the Columbia River estuary. Eight plane transects over a 12-h period yield at least eight independent measurements of water level at 2.5-km increments over a 65-km stretch of the estuary. These data are fit to a sinusoidal curve and the results are compared to seven in situ gauges. In situ– and lidar-based tide curves agree to within a root-mean-square error of 0.21 m, and the lidar-based river slope estimate of 1.8 × 10−5 agrees well with the in situ–based estimate of 1.4 × 10−5 (4 mm km−1 difference). Lidar-based amplitude and phase estimates are within 10% and 8°, respectively, of their in situ counterparts throughout most of the estuary. Error analysis suggests that increased measurement accuracy and more transects are required to reduce the errors in estimates of tidal amplitude and phase. However, the results validate the use of airborne remote sensing to measure tides and suggest this approach can be used to systematically study water levels at a spatial density not possible with in situ gauges. |
Infrared emissivity of seawater and foam at large incidence angles in the 314 μm wavelength range Branch, R., C.C. Chickadel, and A.T. Jessup, "Infrared emissivity of seawater and foam at large incidence angles in the 314 μm wavelength range," Remote Sens. Environ., 184, 15-24, doi:10.1016/j.rse.2016.06.009, 2016. |
More Info |
1 Oct 2016 |
|||||||
Highlights |
ATI SAR simulation shows signatures of complex objects Kovorotniy, A., M. Balaban, V. Gorobets, F. Kivva, Y. Goncharenko, G. Farquharson, and A. Jessup, "ATI SAR simulation shows signatures of complex objects," Proc., 9th International Kharkiv Symposium on Physics and Enginering of Microwaves, Millimeter and Submillimeter Waves, 20-34 June, doi:10.1109/MSMW.2016.7538139 (IEEE, 2016). |
More Info |
11 Aug 2016 |
|||||||
This paper shows results of simulations of single point and complex target signatures of along track interferometric SAR radar. The SAR images of the moving target with motion in along track direction show the typical smearing and displacement of the target signature in case of squint-looking radar. The interferometric image shows the rainbow-like signature for moving target. The behaviors of targets signatures in a good agreement with the obtained experimental results. |
Estimating wave energy dissipation in the surf zone using thermal infrared imagery Carini, R.J. C.C. Chickadel, A.T. Jessup, and J. Thomson, "Estimating wave energy dissipation in the surf zone using thermal infrared imagery," J. Geophys. Res., 120, 3937-3957, doi:10.1002/2014JC010561, 2015. |
More Info |
1 Jun 2015 |
|||||||
Thermal infrared (IR) imagery is used to quantify the high spatial and temporal variability of dissipation due to wave breaking in the surf zone. The foam produced in an actively breaking crest, or wave roller, has a distinct signature in IR imagery. A retrieval algorithm is developed to detect breaking waves and extract wave roller length using measurements taken during the Surf Zone Optics 2010 experiment at Duck, NC. The remotely derived roller length and an in situ estimate of wave slope are used to estimate dissipation due to wave breaking by means of the wave-resolving model by Duncan (1981). The wave energy dissipation rate estimates show a pattern of increased breaking during low tide over a sand bar, consistent with in situ turbulent kinetic energy dissipation rate estimates from fixed and drifting instruments over the bar. When integrated over the surf zone width, these dissipation rate estimates account for 4069% of the incoming wave energy flux. The Duncan (1981) estimates agree with those from a dissipation parameterization by Janssen and Battjes (2007), a wave energy dissipation model commonly applied within nearshore circulation models. |
Regional rainfall measurements using the passive aquatic listener during the SPURS field campaign Yang, J., S.C. Riser, J.A. Nystuen, W.E. Asher, and A.T. Jessup, "Regional rainfall measurements using the passive aquatic listener during the SPURS field campaign," Oceanography, 28, 124-133, doi:10.5670/oceanog.2015.10, 2015. |
More Info |
1 Mar 2015 |
|||||||
Knowledge of the intensity and spatial-temporal distribution of rainfall over the ocean is critical in understanding the global hydrological cycle. However, rain has proven difficult to measure over the ocean due to problems associated with platform motion and flow distortion combined with the spatial and temporal variability of rainfall itself. Underwater acoustical rain gauges avoid these issues by using the loud and distinctive underwater sound generated by raindrops on the ocean surface to detect and quantify rainfall. Here, the physics and operation of and results from an instrument that uses underwater ambient sound to measure rainfall rate and wind speed are presented. Passive Aquatic Listener (PAL) instruments were mounted on a buoy deployed at Ocean Station P and on 13 Argo profilers that were deployed as part of the US National Aeronautics and Space Administration-sponsored Salinity Processes in the Upper-ocean Regional Study (SPURS) field experiment in the North Atlantic Ocean. The PALs provide near-continuous measurements of rain rate and wind speed during the two-year period over the SPURS study region defined by the Argo profilers. Comparisons of PAL data with rain and wind measured by other techniques, including direct in situ observations and satellite measurements, show good agreement for both rain rate and wind speed. |
Stable near-surface ocean salinity stratifications due to evaporation observed during STRASSE Asher, W.E., A.T. Jessup, and D. Clark, "Stable near-surface ocean salinity stratifications due to evaporation observed during STRASSE," J. Geophys. Res., 119, 3219-3233, doi:10.1002/2014JC009808, 2014. |
More Info |
1 May 2014 |
|||||||
Under conditions with a large solar flux and low wind speed, a stably stratified warm layer forms at the ocean surface. Evaporation can then lead to an increase in salinity in the warm layer. A large temperature gradient will decrease density enough to counter the density increase caused by the salinity increase, forming a stable positive salinity anomaly at the surface. If these positive salinity anomalies are large in terms of the change in salinity from surface to the base of the gradient, if their areal coverage is a significant fraction of the satellite footprint, and if they persist long enough to be in the satellite field of view, they could be relevant for calibration and validation of L-band microwave salinity measurements. A towed, surface-following profiler was deployed from the N/O Thalassa during the Subtropical Atlantic Surface Salinity Experiment (STRASSE). The profiler measured temperature and conductivity in the surface ocean at depths of 10, 50, and 100 cm. The measurements show that positive salinity anomalies are common at the ocean surface for wind speeds less than 4 m s-1 when the average daily insolation is >300 W m-2 and the sea-to-air latent heat flux is greater than zero. A semiempirical model predicts the observed dependence of measured anomalies on environmental conditions. However, the model results and the field data suggest that these ocean surface salinity anomalies are not large enough in terms of the salinity difference to significantly affect microwave radiometric measurements of salinity. |
Thermal infrared multipath reflection from breaking waves observed at large incidence angles Branch, R., C.C. Chickadel, and A.T. Jessup, "Thermal infrared multipath reflection from breaking waves observed at large incidence angles," IEEE Trans. Geosci. Remote Sens., 52, 249-256, doi:10.1109/TGRS.2013.2238241, 2014. |
More Info |
1 Jan 2014 |
|||||||
The infrared signature of breaking waves at large incidence angles was investigated using laboratory experiments and a radiometric model. Infrared imagery of the water surface at incidence angles greater than 70° shows multipath reflections for both spilling and plunging waves generated using a programmable wave maker. For the spilling breakers, the multipath signature was initially distinct from the breaking wave front roller signature but then merged to create a single large bright distributed target. For the plunging breakers, the roller and multipath signatures overlapped from the inception of breaking. The radiance of the multipath reflection was higher than the surrounding water for simulated cold sky conditions and lower for a simulated warm sky. A specular double-reflection model successfully predicted the presence of multipath reflection but the magnitude was sensitive to small uncertainties in geometry, wave slope, and input temperatures. The results show that multipath reflection from breaking waves is characteristic of large incidence angle infrared measurements and increases the area and magnitude of the infrared signature of breaking waves compared to the background. |
Turbulent kinetic energy and coherent structures in a tidal river Talke, S.A., A.R. Horner-Devine, C.C. Chickadel, and A.T. Jessup, "Turbulent kinetic energy and coherent structures in a tidal river," J. Geophys. Res., 118, 6965-6981, doi:10.1002/2012JC008103, 2013. |
More Info |
1 Dec 2013 |
|||||||
We investigate the relationship between turbulence statistics and coherent structures (CS) in an unstratified reach of the Snohomish River estuary using in situ velocity measurements and surface infrared (IR) imaging. Sequential IR images are used to estimate surface flow characteristics via a particle-image-velocimetry (PIV) technique, and are conditionally sampled to delineate the surface statistics of bottom-generated CS, or boils. In the water column, we find that turbulent kinetic energy (TKE) production exceeds dissipation near the bed but is less than dissipation in the midwater column and that TKE flux divergence closes a significant portion of the measured imbalance. The surface boundary leads to divergence in upwelling CS, and leads to the redistribution of vertical TKE to the horizontal. Very near the surface, statistical anisotropy is observed at length scales larger than the depth H (3%u20135 m), while boil-scale motions of O(1)m are nearly isotropic and exhibit a 5/3 turbulent cascade to smaller scales. Conditional sampling suggests that TKE dissipation in boils is approximately 2 times greater on average than dissipation in ambient flow. Similarly, surface boils are marked by significantly greater velocity variance, upwelling, divergence, and TKE flux divergence than ambient flow regions. Coherent structures and their surface manifestation, therefore, play an important role in the vertical transport of TKE and the water column distribution of dissipation, and are an important component of the TKE budget. |
Tracking drifting surface objects with aerial infrared and electro-optical sensors Krout, D.W., G. Okopal, A. Jessup, and E. Hanusa, "Tracking drifting surface objects with aerial infrared and electro-optical sensors," Proc., MTS/IEEE Oceans 2012, 14-19 October, Hampton Roads, VA, doi:10.1109/OCEANS.2012.6404804 (MTS/IEEE, 2012). |
More Info |
14 Oct 2012 |
|||||||
Recently, researchers at the Applied Physics Laboratory at the University of Washington collected a unique dataset by suspending two cameras, one infrared and one electro-optical, from a balloon. This apparatus was then used to image objects drifting on the surface of Lake Washington. The authors took that data and built a processing stream to track the movements of those drifting surface objects. |
Statistics of surface divergence and their relation to airwater gas transfer velocity Asher, W.E., H. Kiang, C.J. Zappa, M.R. Loewen, M.A. Mukto, T.M. Litchendorf, and A.T. Jessup,"Statistics of surface divergence and their relation to airwater gas transfer velocity," J. Geophys. Res., 117, doi:10.1029/2001JC007390, 2012. |
More Info |
24 May 2012 |
|||||||
Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity, kL. Because it is difficult to measure kL in the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimate kL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 µm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale with kL values measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence. |
Frontogenesis and frontal progression of a trapping-generated estuarine convergence front and its influence on mixing and stratification Giddings, S.N., D.A. Fong, S.G. Monismith, C.C. Chickadel, K.A. Edwards, W.J. Plant, B. Wang, O.B. Fringer, A.R. Horner-Devine, and A.T. Jessup, "Frontogenesis and frontal progression of a trapping-generated estuarine convergence front and its influence on mixing and stratification," Estuar. Coasts, 35, 665-681, doi:10.1007/s12237-011-9453-z, 2012. |
More Info |
1 Mar 2012 |
|||||||
Estuarine fronts are well known to influence transport of waterborne constituents such as phytoplankton and sediment, yet due to their ephemeral nature, capturing the physical driving mechanisms and their influence on stratification and mixing is difficult. We investigate a repetitive estuarine frontal feature in the Snohomish River Estuary that results from complex bathymetric shoal/channel interactions. In particular, we highlight a trapping mechanism by which mid-density water trapped over intertidal mudflats converges with dense water in the main channel forming a sharp front. The frontal density interface is maintained via convergent transverse circulation driven by the competition of lateral baroclinic and centrifugal forcing. The frontal presence and propagation give rise to spatial and temporal variations in stratification and vertical mixing. Importantly, this front leads to enhanced stratification and suppressed vertical mixing at the end of the large flood tide, in contrast to what is found in many estuarine systems. The observed mechanism fits within the broader context of frontogenesis mechanisms in which varying bathymetry drives lateral convergence and baroclinic forcing. We expect similar trapping-generated fronts may occur in a wide variety of estuaries with shoal/channel morphology and/or braided channels and will similarly influence stratification, mixing, and transport. |
Infrared-based measurements of velocity, turbulent kinetic energy, and dissipation at the water surface in a tidal river Chickadel, C.C., S.A. Talke, A.R Horner-Devine, and A.T. Jessup, "Infrared-based measurements of velocity, turbulent kinetic energy, and dissipation at the water surface in a tidal river," IEEE Geosci. Remote Sens. Lett., 8, 849-853, doi:10.1109/LGRS.2011.2125942, 2011. |
More Info |
1 Sep 2011 |
|||||||
Thermal infrared (IR)-based particle image velocimetry (PIV) is used to measure the evolution of velocity, turbulent kinetic energy (TKE), and the TKE dissipation rate at the water surface in the tidally influenced Snohomish River. Patterns of temperature variability in the IR imagery arise from disruption of the cool-skin layer and are used to estimate the 2-D velocity field. Comparisons of IR-based PIV mean velocity made with a colocated acoustic velocimeter demonstrate high correlation. IR-based PIV provides detailed measurements of previously inaccessible surface velocities and turbulence statistics. |
The impact of measurement uncertainty and spatial variability on the accuracy of skin and subsurface regression-based sea surface temperature algorithms Castro, S.L., G.A. Wick, P.J. Minnett, A.T. Jessup, and W.J. Emery, "The impact of measurement uncertainty and spatial variability on the accuracy of skin and subsurface regression-based sea surface temperature algorithms," Remote Sens. Environ., 114, 2666-2678, doi:10.1016/j.rse.2010.06.003, 2010. |
More Info |
24 Jul 2010 |
|||||||
An ongoing limitation of common regression-based infrared (IR) satellite sea surface temperature (SST) algorithms has been the lack of sufficient in situ skin temperature measurements for derivation of the algorithm coefficients. Since IR brightness temperatures respond to the skin temperature, use of the more numerous subsurface observations to tune the algorithms introduces uncertainty into the resulting SST products. Coincident in situ skin and subsurface SST measurements from three years of cruises are used to derive parallel skin and subsurface multichannel SST (MCSST)-type regression algorithms to determine the extent to which improved accuracy can be obtained using the skin measurements. Through use of only coincident measurements, the advantage offered by the greater volume of available subsurface observations is eliminated. Surprisingly, we find no accuracy improvement using skin SST algorithms relative to algorithms derived from the research-grade ship-borne subsurface temperature measurements used in our analysis. However, better accuracy was found relative to algorithms derived from subsurface observations whose accuracy was degraded to that of buoys. The results are robust with regard to satellite resolution, collocation criteria, geographical regions, and time of day. |
Remotely sensed river surface features compared with modeling and in situ measurements Plant, W.J., R. Branch, G. Chatham, C.C. Chickadel, K. Hayes, B. Hayworth, A. Horner-Devine, A. Jessup, D.A. Fong, O.B. Fringer, S.N. Giddings, S. Monismith, and B. Wang, "Remotely sensed river surface features compared with modeling and in situ measurements," J. Geophys. Res., 114, doi:10.1029/2009JC005440, 2009. |
More Info |
3 Nov 2009 |
|||||||
Images of river surface features that reflect the bathymetry and flow in the river have been obtained using remote sensing at microwave, visible, and infrared frequencies. The experiments were conducted at Jetty Island near the mouth of the Snohomish River at Everett, Washington, where complex tidal flow occurs over a varied bathymetry, which was measured as part of these experiments. An X band (9.36 GHz) Doppler radar was operated from the river bank and produced images of normalized radar cross sections and radial surface velocities every 20 min over many tidal cycles. The visible and infrared instruments were flown in an airplane. All of these techniques showed surface evidence of frontal features, flow over a sill, and flow conditioned by a deep hole. These features were modeled numerically, and the model results correspond well to the remote observations. In situ measurements made near the hole showed that changes in measured velocities correlate well with the occurrence of the features in the images. In addition to tidal phase, the occurrence of these features in the imagery depends on tidal range. The surface roughness observed in the imagery appears to be generated by the bathymetry and flow themselves rather than by the modulation of wind waves. |
Evidence for complete and partial surface renewal at an air-water interface Jessup, A.T., W.E. Asher, M. Atmane, K. Phadnis, C.J. Zappa, and M.R. Loewen, "Evidence for complete and partial surface renewal at an air-water interface," Geophys. Res. Lett., 36, doi:10.1029/2009GL038986, 2009. |
More Info |
27 Aug 2009 |
|||||||
A wind-wave flume is used to determine the extent to which the thermal boundary layer (TBL) at a wind-forced air-water interface is completely renewed from below. We measure skin temperature, Tskin , radiometrically, temperature immediately below the TBL, Tsubskin , using a temperature profiler, and net heat flux using the gradient flux technique. The Tskin probability density function, p(Tskin), and surface renewal time scale were measured using passive and active infrared imaging techniques, respectively. We find that the mean percentile rank of Tsubskin in p(Tskin) is 99.90, implying that complete surface renewal occurs. This result suggests an alternative to radiometric measurement of Tskin through the simple combination of an infrared camera and an in situ temperature sensor. Comparison of the temperature difference across the TBL to the expected cooling implies that a significant portion of events only partially renew the TBL. This result should impact efforts to improve air-sea transfer models. |
A fourier-based method for the distribution of breaking crests from video observations Thomson, J., and A.T. Jessup, "A fourier-based method for the distribution of breaking crests from video observations," J. Atmos. Ocean. Technol., 26, 1663-1671, doi:10.1175/2009JTECHO622.1, 2009. |
More Info |
1 Aug 2009 |
|||||||
A Fourier-based method is presented to process video observations of water waves and calculate the speed distribution of breaking crest lengths. The method has increased efficiency and robust statistics compared with conventional algorithms that assemble distributions from tracking individual crests in the time domain. The method is tested using field observations (video images of whitecaps) of fetch-limited breaking waves during case studies with low (6.7 m s-1), moderate (8.5 m s-1), and high (12.6 m s-1) wind speeds. The method gives distributions consistent with conventional algorithms, including breaking rates that are consistent with direct observations. Results are applied to obtain remote estimates of the energy dissipation associated with wave breaking. |
Energy dissipation and the spectral distribution of whitecaps Thomson, J., J.R. Gemmrich, and A.T. Jessup, "Energy dissipation and the spectral distribution of whitecaps," Geophys. Res. Lett, 36, doi:10.1029/2009GL038201, 2009. |
More Info |
3 Jun 2009 |
|||||||
Energy dissipation by breaking water waves is quantified indirectly using remote observations (digital video recordings) and directly using in situ observations (acoustic Doppler velocity profiles). The analysis is the first validation using field data to test the Duncan-Phillips formulation relating energy dissipation to the spectral distribution of whitecap speeds and lengths. Energy dissipation estimates are in agreement over two orders of magnitude, and demonstrate a promising method for routine observation of wave breaking dynamics. Breaking statistics are partitioned into contributions from waves at the peak of the wave-height spectrum and waves at higher frequencies in the spectrum. Peak waves are found to be only 10% of the total breaking rate, however peak waves contribute up to 75% of the total dissipation rate. In addition, breaking statistics are found to depend on the peak wave steepness and the energy input by the wind. |
Vertical boil propagation from a submerged estuarine sill Chickadel, C.C., A.R. Horner-Devine, S.A. Talke, and A.T. Jessup, "Vertical boil propagation from a submerged estuarine sill," Geophys. Res. Lett., 36, doi:10.1029/2009GL037278, 2009. |
More Info |
20 May 2009 |
|||||||
Surface disruptions by boils during strong tidal flows over a rocky sill were observed in thermal infrared imagery collected at the Snohomish River estuary in Washington State. Locations of boil disruptions and boil diameters at the surface were quantified and are used to test an idealized model of vertical boil propagation. The model is developed as a two-dimensional approximation of a three-dimensional vortex loop, and boil vorticity is derived from the flow shear over the sill. Predictions of boil disruption locations were determined from the modeled vertical velocity, the sill depth, and the over-sill velocity. Predictions by the vertical velocity model agree well with measured locations (rms difference 3.0 m) and improve by using measured velocity and shear (rms difference 1.8 m). In comparison, a boil-surfacing model derived from laboratory turbulent mixed-layer wakes agrees with the measurements only when stratification is insignificant. |
Relating microwave modulation to microbreaking observed in infrared imagery Branch, R., W.J. Plant, M. Gade, A.T. Jessup, "Relating microwave modulation to microbreaking observed in infrared imagery," IEEE Geosci. Remote Sens. Lett., 5, 364-367, 10.1109/LGRS.2008.916198, 2008. |
More Info |
16 Jul 2008 |
|||||||
Microwave modulation by swell waves and its relation to microbreaking waves were investigated in an ocean experiment. Simultaneous collocated microwave and infrared (IR) measurements of wind waves and swell on the ocean were made. The normalized radar cross section sigma0 and the skin temperature Tskin were both modulated by the swell, but with differing phases. In general, sigma0 maxima occurred on the front face, whereas Tskin maxima occurred on the rear face of the swell. Infrared imagery has shown that swell-induced microbreaking occurred at or near the swell crest and that the resulting warm wakes occurred on the rear face of the wave. When tilt and range modulations are taken into account, the location of microbreaking also accounts for the maximum of sigma0 occurring on the front face of the swell. Thus, microbreaking waves generated near the crest of low-amplitude swell can produce microwave and IR signatures with the observed phase. The relationship between microwave and IR signals was further emphasized by comparing microwave Doppler spectra with simultaneous IR and visible images of the sea surface from the same location. When small and microscale breaking waves were present, Doppler spectra exhibited characteristics that are similar to those from whitecaps, having peaks with large Doppler offsets and polarization ratios near unity. When no microbreakers were present, Doppler offsets and polarization ratios were much smaller in accordance with a composite surface scattering theory. |
Comparisons of shipboard infrared sea surface skin temperature measurements from the CIRIMS and the M-AERI Branch, R., A.T. Jessup, P.J. Minnett, and E.L. Key, "Comparisons of shipboard infrared sea surface skin temperature measurements from the CIRIMS and the M-AERI," J. Atmos. Ocean. Technol., 25, 598-606, 2008. |
More Info |
1 Apr 2008 |
|||||||
Extensive comparisons are made of the infrared sea surface skin temperature Tskin measured by the Calibrated Infrared In situ Measurement System (CIRIMS) and the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI). Data were collected from four separate deployments on the NOAA research vessel (R/V) Ronald H. Brown and the U.S. Coast Guard (USCG) Polar Sea over a wide range of latitudes and environmental conditions. The deployment time totaled roughly 6 months over a 4-yr period and resulted in over 7000 comparison values. |
Integrated ocean skin and bulk temperature measurements using the Calibrated Infrared in Situ Measurement System (CIRIMS) and through-hull ports Jessup, A.T., and R. Branch, "Integrated ocean skin and bulk temperature measurements using the Calibrated Infrared in Situ Measurement System (CIRIMS) and through-hull ports," J. Atmos. Ocean. Technol., 25, 579-597, 2008. |
More Info |
1 Apr 2008 |
|||||||
The design and performance of a shipboard-integrated system for underway skin and bulk temperature is presented. The system consists of the Calibrated Infrared In situ Measurement System (CIRIMS) and through-hull temperature sensors. The CIRIMS is an autonomous shipboard radiometer system that measures the sea surface skin temperature Tskin for validation of satellite-derived sea surface temperature products. General design considerations for shipboard radiometer systems are discussed and the philosophy behind the CIRIMS design is presented. Unique features of the design include a constant temperature housing to stabilize instrument drift, a two-point dynamic calibration procedure, separate sky- and sea-viewing radiometers for simultaneous measurements, and the ability to use an infrared transparent window for environmental protection. Laboratory testing and field deployments are used to establish an estimated error budget, which includes instrumentation and environmental uncertainties. |
Infrared signatures of microbreaking wave modulation Branch, R., and A.T. Jessup, "Infrared signatures of microbreaking wave modulation," IEEE Geosci. Remote Sens. Lett., 4, 372-376, doi:10.1109/LGRS.2007.895688, 2007. |
More Info |
16 Jul 2007 |
|||||||
Infrared (IR) imagery of microbreaking waves in the ocean and laboratory showed modulation of breaking by swell and paddle-generated waves, respectively. Skin temperature also was modulated by the long waves, with the maxima occurring on the rear face of the long waves in both the laboratory and the field. The IR imagery from the ocean and laboratory showed that long-wave-induced microbreaking occurred at or near the long wave crest, and the resulting warm wakes occurred on the rear face. Thus, microbreaking waves generated near the crest of low-amplitude long waves can produce modulation with the maxima on the rear face. This mechanism was shown to be responsible for modulation of the measured in the laboratory and also likely contributed to the modulation observed in the field. |
Sea surface temperature signatures of oceanic internal waves in low winds Farrar, J.T., C.J. Zappa, R.A. Weller, and A.T. Jessup, "Sea surface temperature signatures of oceanic internal waves in low winds," J. Geophys. Res., 112, 10.1029/2006JC003947, 2007. |
More Info |
20 Jun 2007 |
|||||||
In aerial surveys conducted during the Tropical OceanGlobal Atmosphere Coupled Ocean-Atmosphere Response Experiment and the low-wind component of the Coupled Boundary Layer Air-Sea Transfer (CBLAST-Low) oceanographic field programs, sea surface temperature (SST) variability at relatively short spatial scales (O(50 m) to O(1 km)) was observed to increase with decreasing wind speed. A unique set of coincident surface and subsurface oceanic temperature measurements from CBLAST-Low is used to investigate the subsurface expression of this spatially organized SST variability, and the SST variability is linked to internal waves. The data are used to test two previously hypothesized mechanisms for SST signatures of oceanic internal waves: a modulation of the cool-skin effect and a modulation of vertical mixing within the diurnal warm layer. |
Ship-based measurements for infrared sensor validation during Aerosol and Ocean Science Expedition 2004 Nalli, N.R., P. Clemente-Colon, P.J. Minnett, M. Szczodrak, V. Morris, E. Joseph, M.D. Goldberg, C.D. Barnet, W.W. Wolf, A. Jessup, R. Branch, R.O. Knuteson, and W.F. Feltz, "Ship-based measurements for infrared sensor validation during Aerosol and Ocean Science Expedition 2004," J. Geophys. Res., 111, 10.1029/2005JD006385, 2006. |
More Info |
7 Apr 2006 |
|||||||
This paper describes a unique validation data set acquired from a marine intensive observing period (IOP) conducted on board the NOAA Ship Ronald H. Brown (RHB) during the 2004 Aerosol and Ocean Science Expedition (AEROSE) in the tropical North Atlantic Ocean from 29 February to 26 March 2004. The radiometric and in situ data complement includes marine observations of the Saharan air layer (SAL), including two significant Saharan dust outbreaks over the Atlantic Ocean. Because the impact of tropospheric dust aerosols on satellite infrared (IR) radiometric observations has not yet been fully characterized, the AEROSE data are particularly valuable for IR sensor validation. Shipboard radiometric data germane to satellite validation include observations from a Marine Atmospheric Emitted Radiance Interferometer (M-AERI), a Calibrated Infrared In situ Measurement System (CIRIMS), and Microtops handheld sunphotometers. Among other things, these data provide, for the first time, coincident IR spectra of the dry, dusty SAL from both the uplooking M-AERI and the downlooking Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite. In situ data collected throughout the cruise include Vaisala RS80/90 radiosondes, launched 3-hourly to include Aqua overpass times. The Aqua matchup profiles provide data for validation of AIRS in the presence of high dust loading, along with temperature and water vapor profile retrievals of the SAL. The frequency of sonde launches also enables validation of coincident uplooking M-AERI boundary layer profile retrievals. Preliminary analyses of the AEROSE data are presented here. Focused AEROSE validation studies are the subjects of separate papers. |
Improved oceanic cool-skin corrections using a refined solar penetration model Wick, G.A., J.C. Ohlmann, C.W. Fairall, and A.T. Jessup, "Improved oceanic cool-skin corrections using a refined solar penetration model," J. Phys. Oceanogr., 35, 1986-1996, doi:10.1175/JPO2803.1, 2005 |
More Info |
1 Nov 2005 |
|||||||
The oceanic near-surface temperature profile must be accurately characterized to enable precise determination of airsea heat exchange and satellite retrievals of sea surface temperature. An improved solar transmission parameterization is integrated into existing models for the oceanic warm layer and cool skin within the Tropical Ocean and Global Atmosphere Coupled OceanAtmosphere Response Experiment (TOGA COARE) bulk flux model to improve the accuracy of predictions of the temperature profile and corresponding heat flux components. Application of the revised bulk flux model to data from 12 diverse cruises demonstrates that the improved parameterization results in significant changes to the predicted cool-skin effect and latent heat fluxes at low wind speeds with high solar radiation due to reduced absorption of solar radiation just below the surface. |
Measurement of the geometric and kinematic properties of microscale breaking waves from infrared imagery using a PIV algorithm Jessup, A.T., and K.R. Phadnis, "Measurement of the geometric and kinematic properties of microscale breaking waves from infrared imagery using a PIV algorithm," Meas. Sci. Technol., 16, 1961-1969, DOI: 10.1088/0957-0233/16/10/011, 2005 |
More Info |
23 Aug 2005 |
|||||||
Infrared techniques have been shown to be uniquely capable of detecting and quantifying microscale breaking waves at an airwater interface. Here we extend current capabilities by developing image processing algorithms to measure the crest lengths and velocities of microbreaking waves in a laboratory windwave tank. The measurements are used to compute the distribution of crest lengths as a function of speed, ∆(c), introduced by Phillips [1] as a formulation for the distribution of breaking waves. Two methods to determine the crest velocity by applying a particle imaging velocimetry (PIV) algorithm to the infrared imagery are developed and compared to a method based on tracking the centroid of the crest. The crest-PIV method is based on estimation of the velocity of crests identified using a temperature threshold. The image-PIV method is based on a velocity threshold applied to a surface velocity map obtained by using the PIV algorithm over the entire image. Both methods are used to compute the surface turnover rate, which is compared to the frequency of breaking. The methods developed demonstrate the potential for infrared imaging techniques to measure the geometric and kinematic properties of microbreaking waves and are relevant to airsea flux studies. |
High-resolution airborne infrared measurements of ocean skin temperature Zappa, C.J., and A.T. Jessup, "High-resolution airborne infrared measurements of ocean skin temperature," IEEE Geosci. Remote Sens. Lett., 2, 146-150, 2005 |
More Info |
18 Apr 2005 |
|||||||
Airborne measurements of ocean skin temperature Ts are presented from the Coupled Boundary Layers, Air-Sea Transfer in Low Winds (CBLAST-Low) Pilot Experiment in August 2001 off Martha's Vineyard, MA. We used an infrared (IR) camera with a spatial resolution of 1 m or less and temperature resolution of roughly 0.02°C. Using subframe sampling of the IR imagery, we achieve lower noise and higher spatial resolution than reported by previous investigators using IR radiometers. Fine-scale maps of Ts exhibit horizontal variability over spatial scales ranging from O(10 km) down to O(1 m) that are related to atmospheric and subsurface phenomena under low to moderate wind conditions. Based on supporting measurements of wind and waves, we identify coherent ramp-like structures in Ts with stratification breakdown and meandering streaky features with internal waves. Regional maps of Ts show the standard deviation for the region is ±1.04°C, while the meridional and zonal variability is 0.23°C x km-1 and 0.27°C x km-1, respectively. This temperature variability results in meridional and zonal scalar heat flux variability of 7.0 W x m-2 x km-1 and 7.6 W x m-2 x km-1, respectively. Our results demonstrate the potential for airborne IR imagery accompanied by high-quality ocean data to identify Ts features produced by subsurface circulation. |
Microbreaking and the enhancement of air-water transfer velocity Zappa, C.J., W.E. Asher, A.T. Jessup, J. Klinke, and S.R. Long, "Microbreaking and the enhancement of air-water transfer velocity," J. Geophys. Res., 109, 10.1029/2003JC001897, 2004. |
More Info |
27 Aug 2004 |
|||||||
The role of microscale wave breaking in controlling the air-water transfer of heat and gas is investigated in a laboratory wind-wave tank. The local heat transfer velocity, kH , is measured using an active infrared technique and the tank-averaged gas transfer velocity, kG , is measured using conservative mass balances. Simultaneous, colocated infrared and wave slope imagery show that wave-related areas of thermal boundary layer disruption and renewal are the turbulent wakes of microscale breaking waves, or microbreakers. The fractional area coverage of microbreakers, AB , is found to be 0.10.4 in the wind speed range 4.29.3 m s-1 for cleaned and surfactant-influenced surfaces, and kH and kG are correlated with AB . The correlation of kH with AB is independent of fetch and the presence of surfactants, while that for kG with AB depends on surfactants. Additionally, AB is correlated with the mean square wave slope, S2, which has shown promise as a correlate for kG in previous studies. The ratio of kH measured inside and outside the microbreaker wakes is 3.4, demonstrating that at these wind speeds, up to 75% of the transfer is the direct result of microbreaking. These results provide quantitative evidence that microbreaking is the dominant mechanism contributing to air-water heat and gas transfer at low to moderate wind speeds. |
Introduction to special edition: Air-sea exchange McGillis, W.R., W.E. Asher, R. Wanninkhof, A.T. Jessup, and R.A. Feely, "Introduction to special edition: Air-sea exchange," J. Geophys. Res., 109, 10.1029/2004JC002605, 2004. |
19 Aug 2004 |
Oceanic application of the active controlled flux technique for measuring air-sea transfer velocities of heat and gases Asher, W.E., A.T. Jessup, and M.A. Atmane, "Oceanic application of the active controlled flux technique for measuring air-sea transfer velocities of heat and gases," J. Geophys. Res., 109, 10.1029/2003JC001862, 2004. |
More Info |
13 Aug 2004 |
|||||||
Detailed understanding of the hydrodynamic mechanisms controlling the air-sea exchange of heat and gas requires a method for rapid measurement of the associated transfer velocities. The active controlled flux technique (ACFT), where the temperature decay of a small patch of water heated by an infrared laser is tracked using an infrared imager, has been proposed as a method for making these fast noninvasive measurements of the heat and gas transfer velocities. Here, we report on ACFT measurements of the transfer velocity of heat, kH, made in the ocean during the Fluxes, Air-sea Interactions and Remote Sensing (FAIRS) experiment (September/October, 2000) and GasEx-01 (January/February, 2001). The results for kH from both FAIRS and GasEx-01 compare favorably when plotted versus wind speed. However, when scaled to a Schmidt number of 660, the measured kH values were found to be a factor of two larger than gas transfer velocities measured during GasEx-01. The ACFT-derived kH values were combined with direct measurements of the bulk-skin oceanic temperature difference to calculate net air-sea heat fluxes during both experiments. Comparison of these values with heat fluxes determined by direct measurements of the latent, sensible, and radiative heat fluxes showed that the ACFT measurements are a factor of seven larger than the direct measurements. One possible theory explaining both the overprediction of the gas transfer velocities and the scale factor between the measured and calculated net heat fluxes is that air-sea exchange is best described by surface penetration rather than surface renewal. |
On the use of the active infrared technique to infer heat and gas transfer velocities at the air-water free surface Atmane, M.A., W.E. Asher, and A.T. Jessup, "On the use of the active infrared technique to infer heat and gas transfer velocities at the air-water free surface," J. Geophys. Res., 109, 10.1029/2003JC001805, 2004. |
More Info |
8 Jul 2004 |
|||||||
A comparison study of the experimental and theoretical transfer velocities of heat and gas transfer at a wavy air-water interface is undertaken using an active infrared technique and two gas tracers. Applying the surface renewal model formalism [ Danckwerts, 1951], we find that the experimentally evaluated heat transfer velocity is roughly a factor of 2 higher than the transfer velocity of a gas with a low solubility in water when both are referenced to Sc = 600. Potential origins of such a discrepancy are investigated and we propose the use of the random eddy model [ Harriott, 1962 ] to explain our results. The model is an extension of surface renewal to include the eddy approach distance as a new parameter. Numerical simulations of the random eddy model have been performed using a timescale evaluated from the Active Controlled Flux Technique (ACFT) and the characteristics of heat as well as the two gases used in the experiments (He and SF6). The simulation results show that the transfer velocities of two species, referenced to the same Schmidt number, are different and that their ratio depends on the average value of the approach distance and its distribution. The model as implemented in the present work also predicts changes in the Schmidt number exponent when the hydrodynamics conditions are varied. |
Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients Ward, B., R. Wanninkhof, W.R. McGillis, A.T. Jessup, M.D. DeGrandpre, J.E. Hare, and J.B. Edson, "Biases in the air-sea flux of CO2 resulting from ocean surface temperature gradients," J. Geophys. Res., 109, 10.1029/2003JC001800, 2004. |
More Info |
30 Jun 2004 |
|||||||
The difference in the fugacities of CO2 across the diffusive sublayer at the ocean surface is the driving force behind the air-sea flux of CO2. Bulk seawater fugacity is normally measured several meters below the surface, while the fugacity at the water surface, assumed to be in equilibrium with the atmosphere, is measured several meters above the surface. Implied in these measurements is that the fugacity values are the same as those across the diffusive boundary layer. However, temperature gradients exist at the interface due to molecular transfer processes, resulting in a cool surface temperature, known as the skin effect. A warm layer from solar radiation can also result in a heterogeneous temperature profile within the upper few meters of the ocean. Here we describe measurements carried out during a 14-day study in the equatorial Pacific Ocean (GasEx-2001) aimed at estimating the gradients of CO2 near the surface and resulting flux anomalies. The fugacity measurements were corrected for temperature effects using data from the ship's thermosalinograph, a high-resolution profiler (SkinDeEP), an infrared radiometer (CIRIMS), and several point measurements at different depths on various platforms. Results from SkinDeEP show that the largest cool skin and warm layer biases occur at low winds, with maximum biases of ~4% and +4%, respectively. Time series ship data show an average CO2 flux cool skin retardation of about 2%. Ship and drifter data show significant CO2 flux enhancement due to the warm layer, with maximums occurring in the afternoon. Temperature measurements were compared to predictions based on available cool skin parameterizations to predict the skin-bulk temperature difference, along with a warm layer model. |
Coherent structures beneath wind waves and their influence on air-water gas transfer Siddiqui, M.H.K., M.R. Loewen, W.E. Asher, and A.T. Jessup, "Coherent structures beneath wind waves and their influence on air-water gas transfer," J. Geophys. Res., 109, C03024, 10.1029/2002JC001559, 2004. |
More Info |
17 Mar 2004 |
|||||||
Coherent structures generated beneath laboratory wind waves were investigated using particle image velocimetry. An algorithm was developed to detect these structures and to determine their size, vorticity, and kinetic energy. As the wind speed increased from 4.5 to 11.0 m s-1, the maximum vorticity of the coherent structures increased by 40%, their average size increased by 20%, their frequency of occurrence increased 400%, and the fraction of the water surface renewed by coherent structures increased from 0.12 to 0.33. Distributions of the total kinetic energy of the coherent structures as a function of size showed that the most energetic eddies occurred in the size range 0.81.6 cm in diameter. The near-surface flow could be divided into areas with one of two distinct characteristics: energetic regions occupied by coherent structures and quiescent regions largely devoid of coherent structures. A surface renewal model for air-water exchange was used to calculate the local transfer velocity in both types of regions. The model predicted that the gas transfer velocities in the energetic regions were 2.8 times larger than in the quiescent regions and that 60% of the total air-water gas flux occurred across the energetic regions at all wind speeds. In addition, the rate of turbulent kinetic energy dissipation was ~2.5 times higher in the energetic regions compared to the quiescent regions at all wind speeds. |
The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results Barton, I.J., P.J. Minnett, K.A. Maillet, C.J. Donlon, S.J. Hook, A.T. Jessup, and T.J. Nightingale, "The Miami2001 infrared radiometer calibration and intercomparison. Part II: Shipboard results," J. Atmos. Ocean. Technol., 21, 268-283, 2004. |
More Info |
1 Feb 2004 |
|||||||
The second calibration and intercomparison of infrared radiometers (Miami2001) was held at the University of Miami's Rosenstiel School of Marine and Atmospheric Science (RSMAS) during a workshop held from May to June 2001. The radiometers targeted in these two campaigns (laboratory-based and at-sea measurements) are those used to validate the skin sea surface temperatures and land surface temperatures derived from the measurements of imaging radiometers on earth observation satellites. These satellite instruments include those on currently operational satellites and others that will be launched within two years following the workshop. The experimental campaigns were completed in one week and included laboratory measurements using blackbody calibration targets characterized by the National Institute of Standards and Technology (NIST), and an intercomparison of the radiometers on a short cruise on board the R/V F. G. Walton Smith in Gulf Stream waters off the eastern coast of Florida. This paper reports on the results obtained from the shipborne measurements. |
Effect of microscale wave breaking on air-water gas transfer Zappa, C.J., W.E. Asher, and A.T. Jessup, "Effect of microscale wave breaking on air-water gas transfer," in Gas Transfer at Water Surfaces, edited by M.A. Donelan, W.M. Drennan, E.S. Saltzman, and R. Wanninkhof, 23-30 (American Geophysical Union, Washington, D.C., 2002). |
1 Jun 2002 |
Turbulence generated by microscale breaking waves and its influence on air-water gas transfer Siddiqui, M.H.K., M.R. Loewen, C. Richardson, W.E. Asher, and A.T. Jessup, "Turbulence generated by microscale breaking waves and its influence on air-water gas transfer," in Gas Transfer at Water Surfaces, edited by M.A. Donelan, W.M. Drennan, E.S. Saltzman, and R. Wanninkhof, 11-16 (American Geophysical Union, Washington, D.C., 2002). |
More Info |
1 Jun 2002 |
|||||||
The results from a series of wind-wave flume experiments using simultaneous DPIV (digital particle image velocimetry) measurements and IR (infrared) imagery to investigate microscale breaking waves are presented. We show that the IR signatures of microscale breaking waves are produced by a series of strong vortices that form behind the leading edge of the breakers. These strong vortices disrupt the cool skin layer and generated a thin layer of enhanced turbulence immediately below the air-water interface. In addition we used CFT (controlled flux technique) to make measurements of the local heat transfer velocity and found that the transfer velocity was correlated with the near-surface vertical turbulent velocity. We conclude that near-surface turbulence generated by microscale wave breaking determines the transfer rate at low to moderate wind speeds. |
Simultaneous particle image velocimetry and infrared imagery of microscale breaking waves Siddiqui, M.H.K., M.R. Loewen, C. Richardson, W.E. Asher, and A.T. Jessup, "Simultaneous particle image velocimetry and infrared imagery of microscale breaking waves," Phys. Fluids, 13, 1891-1903, 2001. |
More Info |
1 Jul 2001 |
|||||||
We report the results from a laboratory investigation in which microscale breaking waves were detected using an infrared (IR) imager and two-dimensional (2-D) velocity fields were simultaneously measured using particle image velocimetry (PIV). In addition, the local heat transfer velocity was measured using the controlled flux technique. To the best of our knowledge these are the first measurements of the instantaneous 2-D velocity fields generated beneath microscale breaking waves. Careful measurements of the water surface profile enabled us to make accurate estimates of the near-surface velocities using PIV. Previous experiments have shown that behind the leading edge of a microscale breaker the cool skin layer is disrupted creating a thermal signature in the IR image [Jessup et al., J. Geophys. Res. 102, 23145 (1997)]. The simultaneously sampled IR images and PIV data enabled us to show that these disruptions or wakes are typically produced by a series of vortices that form behind the leading edge of the breaker. When the vortices are first formed they are very strong and coherent but as time passes, and they move from the crest region to the back face of the wave, they become weaker and less coherent. The near-surface vorticity was correlated with both the fractional area coverage of microscale breaking waves and the local heat transfer velocity. The strong correlations provide convincing evidence that the wakes produced by microscale breaking waves are regions of high near-surface vorticity that are in turn responsible for enhancing airwater heat transfer rates. |
Microscale wave breaking and air-water gas transfer Zappa, C.J., W.E. Asher, and A.T. Jessup, "Microscale wave breaking and air-water gas transfer," J. Geophys. Res., 106, 9385-9391, doi:10.1029/2000JC000262, 2001. |
More Info |
15 May 2001 |
|||||||
Laboratory results showing that the air-water gas transfer velocity k is correlated with mean square wave slope have been cited as evidence that a wave-related mechanism regulates k at low to moderate wind speeds [Jähne et al., 1987; Bock et al., 1999]. Csanady [1990] has modeled the effect of microscale wave breaking on air-water gas transfer with the result that k is proportional to the fractional surface area covered by surface renewal generated during the breaking process. In this report we investigate the role of microscale wave breaking in gas transfer by determining the correlation between k and AB , the fractional area coverage of microscale breaking waves. Simultaneous, colocated infrared (IR) and wave slope imagery is used to verify that AB detected using IR techniques corresponds to the fraction of surface area covered by surface renewal in the wakes of microscale breaking waves. Using measurements of k and AB made at the University of Washington wind-wave tank at wind speeds from 4.6 to 10.7 m s-1, we show that k is linearly correlated with AB, regardless of the presence of surfactants. This result is consistent with Csanady's [1990] model and implies that microscale wave breaking is likely a fundamental physical mechanism contributing to gas transfer. |
In The News
Ocean measurements by UW will be part of just-launched satellite mission UW News & Information, Sandra Hines With the launch earlier this month of NASA's satellite Aquarius, more than half a dozen University of Washington researchers are involved in projects to calibrate data from space with actual measurements of ocean salinity. |
21 Jun 2011
|