APL-UW

Tim McGinnis

Sr. Principal Engineer

Email

tmcginnis@apl.washington.edu

Phone

206-543-1346

Research Interests

Oceanographic Equipment Design, System Engineering

Biosketch

Tim McGinnis's main interest and expertise is in deep ocean engineering and equipment design. For over 30 years, Tim has been involved with a variety of towed and bottom landing vehicle development projects, deep ocean cabled observatories, and at-sea operations for mapping, imaging, sensing, and sampling the seafloor and water column in water depths to 5000 meters.

Tim joined APL-UW in 2001 and was the System Engineer for the development of the NEPTUNE/MARS power system. Since then has been involved with a number of mooring and profiler developments and deployments at the Laboratory. He is now working on the Ocean Observing Initiative Regional Scale Nodes (RSN) project where he is the lead for ROV-mateable connectors, secondary seafloor extension cables, and development of the Deep Profiler.

Department Affiliation

Ocean Engineering

Education

B.S. Engineering, University of Washington, 1983

Projects

MuST — Multi-Sensor Towbody

A modular system of subsea acoustic sensing and topside data acquisition and processing technologies detect, geolocate, and classify UXOs, as well as buried cables, archeological artifacts, and other structures.

7 Mar 2022

Hawaii Ocean Time Series (HOT) Profiler

We have developed a system of inductively charging a McLane profiler from a large bank of underwater batteries (actually 5100 "D" cells). The goal is to enable the profiler to profile the entire water column every hour or so for a whole year, which represents a ten-fold advance over current capabilities.

27 Sep 2011

ALOHA Mooring

The ALOHA/MARS mooring sensor network combines adaptive sampling methods with a moored deep-ocean sensor network.

More Info

 

This project will demonstrate the scientific potential of combining adaptive sampling methods with a moored deep-ocean sensor network at the Hawaii Ocean Time-series (HOT) station and ALOHA/MARS Observatory (AO). We will directly address the challenge of sampling the ocean with both high temporal resolution and high vertical resolution. With the moored sensor network consisting of a profiler moving between near-surface and abyssal fixed sensors under program control, we will be able to focus the sampling and measurement capabilities on the scientific features of most interest.

Publications

2000-present and while at APL-UW

Multi-sensor towbody: Expandable platform detects, geolocates and classifies UXO

Williams, K., T. Marston, and T. McGinnis, "Multi-sensor towbody: Expandable platform detects, geolocates and classifies UXO," Sea Technol., 62, 8-11, 2021.

1 Sep 2021

Inductive power mooring lines for OOI's shallow and deep profilers

McGinnis, T., G. Cram, and E. Boget, "Inductive power mooring lines for OOI's shallow and deep profilers," Sea Techol., 61, 14-18, 2020.

More Info

1 Apr 2020

As oceanographers seek to deploy their field sensors for longer subsea campaigns, advances in mooring line construction and technology are enabling new approaches to moorings. No longer is the mooring line a passive element; instead, the development of the first inductive power mooring line by high-performance fiber-rope maker Pillystran allow it to function as an integral part of the oceanographic monitoring system.

An inductive charging and real-time communications system for profiling moorings

Alford, M.H., T. McGinnis, and B.M. Howe, "An inductive charging and real-time communications system for profiling moorings," J. Atmos. Ocean. Technol., 32, 2243-2252, doi:10.1175/JTECH-D-15-0103.1, 2015.

More Info

1 Dec 2015

We describe a system for providing power and communications to moored profiling vehicles. A McLane Moored Profiler (MP) was equipped with a rechargeable battery pack and an inductive charging system to allow it to move periodically to a charging dock at the top of the subsurface mooring. Power was provided from a large bank of alkaline batteries housed in two 0.95-m steel spheres. Data were transferred inductively from the profiler to a mooring controller, and from there back to shore via radio and Iridium satellite modems housed in a small surface communications float on an "L" tether. An acoustic modem provided backup communications to a nearby ship in the event of loss or damage to the surface float. The system was tested in a 180-m-deep fjord (Puget Sound, WA) and at station ALOHA, a 4748-m deep open-ocean location north of Hawaii. Basic functionality of the system was demonstrated, with the Profiler repeatedly recharging at about 300W (with an overall efficiency of about 70%). Data were relayed back to shore via Iridium, and to a nearby ship via the radio and acoustic modems. The system profiled flawlessly for the entire 6-week test in Puget Sound, but charging at the deep site stopped after only 9 days in the deep-ocean deployment owing to damage to the charging station, possibly by surface wave action.

More Publications

In The News

MacArtney and the Applied Physics Laboratory Launching FOCUS 3 ROTV

Ocean News & Technology, Ocean News staff

Collaborating for almost two decades MacArtney and the Applied Physics Laboratory at the University of Washington has recently launched the FOCUS 3 – APL’s latest acquisition in the pursuit of unexploded ordnance detection.

6 Jun 2019

Tethered robots tested for Internet-connected ocean observatory

UW News and Information, Hannah Hickey

A massive digital ocean observatory will include a new generation of ocean explorers: robots that will zoom up and down through almost two miles of ocean to monitor the water conditions and marine life above. Scientists, engineers and students will be at sea from July to October 2014 to finish installation of the high-tech facility, which will be the world%u2019s largest Internet-connected ocean observatory.

13 Mar 2014

Close

 

Close