|
CIMU
Center for Industrial and Medical Ultrasound
|
|
|
|
|
It’s got such promise. The whole idea of a patient going into a hospital and being operated on is fraught with danger, you know. And infections are a huge problem with patients and if we can reduce the amount of infections, we’ll dramatically increase survival rates and acoustic waves are ways to do that.
|
|
|
|
Overview of therapeutic ultrasound applications and safety considerations Miller, D.L., N.B. Smith, M.R. Bailey, G.J. Czarnota, K. Hynynen, I.R.S. Makin, and Bioeffects Committee of the American Institute of Ultrasound in Medicine, "Overview of therapeutic ultrasound applications and safety considerations," J. Ultrasound Med., 31, 623-634, 2012. |
|
More Info
| |
|
1 Apr 2012
|
|
|
|
|
Applications of ultrasound in medicine for therapeutic purposes have been accepted and beneficial uses of ultrasonic biological effects for many years. Low-power ultrasound of about 1 MHz has been widely applied since the 1950s for physical therapy in conditions such as tendinitis and bursitis. In the 1980s, high-pressure-amplitude shock waves came into use for mechanically resolving kidney stones, and %u201Clithotripsy%u201D rapidly replaced surgery as the most frequent treatment choice. The use of ultrasonic energy for therapy continues to expand, and approved applications now include uterine fibroid ablation, cataract removal (phacoemulsification), surgical tissue cutting and hemostasis, transdermal drug delivery, and bone fracture healing, among others. Undesirable bioeffects can occur, including burns from thermal-based therapies and severe hemorrhage from mechanical-based therapies (eg, lithotripsy). In all of these therapeutic applications of ultrasound bioeffects, standardization, ultrasound dosimetry, benefits assurance, and side-effect risk minimization must be carefully considered to ensure an optimal benefit to risk ratio for the patient. Therapeutic ultrasound typically has well-defined benefits and risks and therefore presents a manageable safety problem to the clinician. However, safety information can be scattered, confusing, or subject to commercial conflicts of interest. Of paramount importance for managing this problem is the communication of practical safety information by authoritative groups, such as the American Institute of Ultrasound in Medicine, to the medical ultrasound community. In this overview, the Bioeffects Committee of the American Institute of Ultrasound in Medicine outlines the wide range of therapeutic ultrasound methods, which are in clinical use or under study, and provides general guidance for ensuring therapeutic ultrasound safety.
|
|
|
|
Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels Chen, H., A.A. Brayman, W. Kreider, M.R. Bailey, and T.J. Matula, "Observations of translation and jetting of ultrasound-activated microbubbles in mesenteric microvessels," Ultrasound Med. Biol., 37, 2139-2148, doi:10.1016/j.ultrasmedbio.2011.09.013, 2011. |
|
More Info
| |
|
1 Dec 2011
|
|
|
|
|
High-speed photomicrography was used to study the translational dynamics of single microbubbles in microvessels of ex vivo rat mesenteries. The microbubbles were insonated by a single 2 microsecond ultrasound pulse with a center frequency of 1 MHz and peak negative pressures spanning the range of 0.8-4 MPa. The microvessel diameters ranged from 10-80 micrometers. The high-speed image sequences show evidence of ultrasound-activated microbubble translation away from the nearest vessel wall; no microbubble showed a net translation toward the nearest vessel wall. Microbubble maximum translation displacements exceeded 20 micrometers. Microjets with the direction of the jets identifiable were also observed; all microjets appear to have been directed away from the nearest vessel wall. These observations appear to be characteristic of a strong coupling between ultrasound-driven microbubbles and compliant microvessels. Although limited to mesenteric tissues, these observations provide an important step in understanding the physical interactions between microbubbles and microvessels.
|
|
|
|
Explorations of high-intensity therapeutic ultrasound and microbubble-mediated gene delivery in mouse liver Song, S., Z. Shen, L. Chen, A. A. Brayman, and C.H. Miao, "Explorations of high-intensity therapeutic ultrasound and microbubble-mediated gene delivery in mouse liver," Gene Ther., 18, 1006-1014, doi: 10.1038/gt.2011.34, 2011. |
|
More Info
| |
|
1 Oct 2011
|
|
|
|
|
Ultrasound (US) combined with microbubbles (MBs) is a promising technology for non-viral gene delivery. Significant enhancements of gene expression have been obtained in our previous studies. To optimize and prepare for application to larger animal models, the luciferase reporter gene transfer efficacy of lipid-based Definity MBs of various concentrations, pressure amplitudes and a novel unfocused high-intensity therapeutic US (HITU) system were explored. Luciferase expression exhibited a dependence on MB dose over the range of 0-25 vol%, and a strong dependence on acoustic peak negative pressure at over the range of 0-3.2 MPa. Gene expression reached an apparent plateau at MB concentration >2.5 vol% or at negative pressures >1.8 MPa. Maximum gene expression in treated animals was 700-fold greater than in negative controls. Pulse train US exposure protocols produced an upward trend of gene expression with increasing quiescent time. The hyperbolic correlation of gene expression and transaminase levels suggested that an optimum gene delivery effect can be achieved by maximizing acoustic cavitation-induced enhancement of DNA uptake and minimizing unproductive tissue damage. This study validated the new HITU system equipped with an unfocused transducer with a larger footprint capable of scanning large tissue areas to effectively enhance gene transfer efficiencies.
|
|
|
|
Targeted long-term venous occlusion using pulsed high-intensity focused ultrasound combined with a pro-inflammatory agent Zhou, Y., J. Zia, C. Warren, F.L. Starr, A.A. Brayman, L.A. Crum, and J.H. Hwang, "Targeted long-term venous occlusion using pulsed high-intensity focused ultrasound combined with a pro-inflammatory agent," Ultrasound Med. Biol., 37, 10, 1653-1658, doi:10.1016/j.ultrasmedbio.2011.06.007, 2011. |
|
More Info
| |
|
1 Oct 2011
|
|
|
|
|
Esophageal and gastric varices are associated with significant morbidity and mortality for cirrhotic patients. The current modalities available for treating bleeding esophageal and gastric varices, namely endoscopic band ligation and sclerotherapy, require frequent sessions to obtain effective thrombosis and are associated with significant adverse effects. A more effective therapy that results in long-term vascular occlusion has the potential to improve patient outcomes. In this study, we investigated a new potential method for inducing long-term vascular occlusion by targeting segments of a rabbit's auricular vein in vivo with low-duty-cycle, high-peak-rarefaction pressure (9 MPa), pulsed high-intensity focused ultrasound in the presence of intravenously administered ultrasound microbubbles followed by local injection of fibrinogen and a pro-inflammatory agent (ethanol, cyanoacrylate or morrhuate sodium). The novel method introduced in this study resulted in acute and long-term complete vascular occlusions when injecting a pro-inflammatory agent with fibrinogen. Future investigation and translational studies are needed to assess its clinical applicability.
|
|
|
|
The effect of scanning pathway in high-intensity focused ultrasound therapy on lesion production Zhou, Y., S.G. Kargl, and J.H. Hwang, "The effect of scanning pathway in high-intensity focused ultrasound therapy on lesion production," Ultrasound Med. Biol., 37, 1457-1468, doi: 10.1016/j.ultrasmedbio.2011.05.848, 2011. |
|
More Info
| |
|
1 Sep 2011
|
|
|
|
|
Because tumors are much larger in size compared with the beam width of high-intensity focused ultrasound (HIFU), raster scanning throughout the entire target is conventionally performed for HIFU thermal ablation. Thermal diffusion affects the temperature elevation and the consequent lesion formation. As a result, the lesion will grow continuously over the course of HIFU therapy. The purpose of this study was to investigate the influence of scanning pathways on the overall thermal lesion. Two new scanning pathways, spiral scanning from the center to the outside and spiral scanning from the outside to the center, were proposed with the same HIFU parameters (power and exposure time) for each treatment spot. The lesions produced in the gel phantom and bovine liver were compared with those using raster scanning. Although more uniform lesions can be achieved using the new scanning pathways, the produced lesion areas (27.5 plus/minus 12.3 mm^2 and 65.2 plus/minus 9.6 mm^2, respectively) in the gel phantom are significantly smaller (p < 0.05) than those using raster scanning (92.9 plus/minus 11.8 mm^2). Furthermore, the lesion patterns in the gel phantom and bovine liver were similar to the simulations using temperature and thermal dose-threshold models, respectively. Thermal diffusion, the scanning pathway and the biophysical aspects of the target all play important roles in HIFU lesion production. By selecting the appropriate scanning pathway and varying the parameters as ablation progresses, HIFU therapy can achieve uniform lesions while minimizing the total delivered energy and treatment time.
|
|
|
|
Development of an EUS-guided high-intensity focused ultrasound endoscope. Hwang, J.H., N. Farr, K. Morrison, Y.N. Wang, T. Khokhlova, B.M. Ko, H.J. Jang, and G. Keilman, "Development of an EUS-guided high-intensity focused ultrasound endoscope." Gastrointest. Endosc., 73, Supplement 1, AB155, doi: 10.1016/j.gie.2011.03.132, 2011. |
|
More Info
| |
|
30 Apr 2011
|
|
|
|
|
High-intensity focused ultrasound (HIFU) is a rapidly developing technology that is becoming more widely used for non-invasive and minimally invasive ablation of benign and malignant tumors. In addition, recent studies suggest that unique mechanical effects of HIFU may help to enhance targeted drug delivery and stimulate an anti-tumor immune response in many tumors including pancreatic tumors. However, targeting of pancreatic tumors using an extracorporeal source is often not possible due to the lack of an adequate acoustic window because of the presence of overlying bowel gas. The development of an EUS-guided HIFU transducer has many potential benefits including improved targeting, decreased energy requirements and decreased potential for injury to intervening structures.
|
|
|
|
Displacement analysis of diagnostic ultrasound backscatter: A methodology for characterizing, modeling, and monitoring high intensity focused ultrasound therapy Speyer, G., P.J. Kaczkowski, A.A. Brayman, and L.A. Crum, "Displacement analysis of diagnostic ultrasound backscatter: A methodology for characterizing, modeling, and monitoring high intensity focused ultrasound therapy," J. Acoust. Soc. Am., 128, 104-120, 2010. |
|
More Info
| |
|
1 Jul 2010
|
|
|
|
|
Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics, provide a natural framework for estimating the administered heating, and thereby therapy.
The proposed method, termed displacement analysis, identifies the relative displacements using linearly independent displacement patterns, or modes, each induced by a particular time-varying heating applied during the exposure interval. These heating modes are themselves linearly independent. This relationship implies that a linear combination of displacement modes aligning the DU measurements is the response to an identical linear combination of heating modes, providing the heating estimate. Furthermore, the accuracy of coefficient estimates in this approximation is determined a priori, characterizing heating, thermal dose, and temperature estimates for any given protocol. Predicted performance is validated using simulations and experiments in alginate gel phantoms. Evidence for a spatially distributed interaction between temperature and time-of-flight changes is presented.
|
|
|
|
Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound Canney, M.S., V.A. Khokhlova, O.V. Bessonova, M.R. Bailey, and L.A. Crum, "Shock-induced heating and millisecond boiling in gels and tissue due to high intensity focused ultrasound," Ultrasound Med Biol., 36, 250-267, 2010. |
|
More Info
| |
|
1 Feb 2010
|
|
|
|
|
Nonlinear propagation causes high-intensity ultrasound waves to distort and generate higher harmonics, which are more readily absorbed and converted to heat than the fundamental frequency. Although such nonlinear effects have been investigated previously and found to not significantly alter high-intensity focused ultrasound (HIFU) treatments, two results reported here change this paradigm. One is that at clinically relevant intensity levels, HIFU waves not only become distorted but form shock waves in tissue. The other is that the generated shock waves heat the tissue to boiling in much less time than predicted for undistorted or weakly distorted waves.
In this study, a 2-MHz HIFU source operating at peak intensities up to 25,000 W/cm2 was used to heat transparent tissue-mimicking phantoms and ex vivo bovine liver samples. Initiation of boiling was detected using high-speed photography, a 20-MHz passive cavitation detector and fluctuation of the drive voltage at the HIFU source. The time to boil obtained experimentally was used to quantify heating rates and was compared with calculations using weak shock theory and the shock amplitudes obtained from nonlinear modeling and measurements with a fiber optic hydrophone. As observed experimentally and predicted by calculations, shocked focal waveforms produced boiling in as little as 3 ms and the time to initiate boiling was sensitive to small changes in HIFU output. Nonlinear heating as a result of shock waves is therefore important to HIFU, and clinicians should be aware of the potential for very rapid boiling because it alters treatments.
|
|
|
|
Targeted venous occlusion using pulsed high-intensity focused ultrasound Hwang, J.H., Y. Zhou, C. Warren, A.A. Brayman, and L.A. Crum, "Targeted venous occlusion using pulsed high-intensity focused ultrasound," IEEE Trans. Biomed. Eng., 57, 37-40, doi:10.1109/TBME.2009.2029865, 2010. |
|
More Info
| |
|
4 Jan 2010
|
|
|
|
|
Targeted vascular occlusion is desirable for clinical therapies such as in the treatment of esophageal and gastric varices and varicose veins. The feasibility of ultrasound-mediated endothelial damage for vascular occlusion was studied. A segment of a rabbit auricular vein was treated in vivo with low duty cycle, high peak rarefaction pressure (9 MPa) high-intensity focused ultrasound pulses in the presence of intravenously administered circulating microbubbles, followed by fibrinogen injection, which resulted in the formation of an acute occlusive intravascular thrombus. Further investigation and refinements of treatment protocols are necessary for producing durable vascular occlusion.
|
|
|
|
A derating method for therapeutic applications of high intensity focused ultrasound Bessonova, O.V., V.A. Khokhlova, M.S. Canney, M.R. Bailey, and L.A. Crum, "A derating method for therapeutic applications of high intensity focused ultrasound," Acoust. Phys., 56, 354-363, 2010. |
|
More Info
| |
|
1 Jan 2010
|
|
|
|
|
Current methods of determining high intensity focused ultrasound (HIFU) fields in tissue rely on extrapolation of measurements in water assuming linear wave propagation both in water and in tissue. Neglecting nonlinear propagation effects in the derating process can result in significant errors. In this work, a new method based on scaling the source amplitude is introduced to estimate focal parameters of nonlinear HIFU fields in tissue. Focal values of acoustic field parameters in absorptive tissue are obtained from a numerical solution to a KZK-type equation and are compared to those simulated for propagation in water. Focal waveforms, peak pressures, and intensities are calculated over a wide range of source outputs and linear focusing gains. Our modeling indicates, that for the high gain sources which are typically used in therapeutic medical applications, the focal field parameters derated with our method agree well with numerical simulation in tissue. The feasibility of the derating method is demonstrated experimentally in excised bovine liver tissue.
|
|
|
|
Therapeutic ultrasound: Recent trends and future perspectives Crum, L., M. Bailey, J.H. Wang, V. Khokhlova, and O. Sapozhnikov, "Therapeutic ultrasound: Recent trends and future perspectives," In Physics Procedia, vol. 3 - International Congress on Ultrasonics, Santiago Chile, January 2009, Luis Gaete Garreton, ed., 25-34 (Elsevier, 2010). |
|
More Info
| |
|
1 Jan 2010
|
|
|
|
|
Before ultrasound-imaging systems became widely available, ultrasound therapy devices showed great promise for general use in medicine. However, it is only in the last decade that ultrasound therapy has begun to obtain clinical acceptance. Recently, a variety of novel applications of therapeutic ultrasound have been developed that include sonothrombolysis, site-specific and ultrasound-mediated drug delivery, shock wave therapy, lithotripsy, tumor ablation, acoustic hemostasis and several others. This paper reviews a few selected applications of therapeutic ultrasound. It will address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. As a plenary presentation, its audience is intended for the ultrasound scientist or engineer, and thus is not presented at the level of the experienced medical ultrasound professional.
|
|
|
|