|
Tidal Power from the Seafloor
|
|
|
|
|
The surging water below is generated by the predictable and dependable ebb and flow of the tide. This begs the question: Can this natural energy be harnessed?
Plans call for two 33-foot tidal power turbines to generate electricity. But before the turbines are lowered into Admiralty Inlet, APL-UW researchers are compiling an intensive profile of the proposed turbine site.
We're trying to determine the current water quality in Admiralty Inlet so that when a tidal power device is installed we can have a baseline to compare whether there was any effect — changing the mixing of the water coming in through Admiralty Inlet.
|
More About This Research
|
|
Recent Publications
|
|
|
|
|
Sediment-generated noise and bed stress in a tidal channel Bassett, C., J. Thomson, and B. Polagye, "Sediment-generated noise and bed stress in a tidal channel," J. Geophys. Res., 118, 2249-2265, doi:10.1002/jgrc.20169, 2013. |
|
More Info
| |
|
30 Apr 2013
|
|
|
|
|
Tidally driven currents and bed stresses can result in noise generated by moving sediments. At a site in Admiralty Inlet, Puget Sound, Washington State (USA), peak bed stresses exceed 20 Pa. Significant increases in noise levels are attributed to mobilized sediments at frequencies from 430 kHz with more modest increases noted from 14 kHz. Sediment-generated noise during strong currents masks background noise from other sources, including vessel traffic. Inversions of the acoustic spectra for equivalent grain sizes are consistent with qualitative data of the seabed composition. Bed stress calculations using log layer, Reynolds stress, and inertial dissipation techniques generally agree well and are used to estimate the shear stresses at which noise levels increase for different grain sizes. Regressions of the acoustic intensity versus near-bed hydrodynamic power demonstrate that noise levels are highly predictable above a critical threshold despite the scatter introduced by the localized nature of mobilization events.
|
|
|
|
Measurements of turbulence at two tidal energy sites in Puget Sound, WA Thomson, J., B. Polagye, V. Durgesh, M.C. Richmond, "Measurements of turbulence at two tidal energy sites in Puget Sound, WA," IEEE J. Ocean. Eng., 37, 363-374, doi:10.1109/JOE.2012.2191656, 2012. |
|
More Info
| |
|
15 May 2012
|
|
|
|
|
Field measurements of turbulence are presented from two sites in Puget Sound, WA, that are proposed for electrical power generation using tidal current turbines. Time series data from multiple acoustic Doppler instruments are analyzed to obtain statistical measures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the deterministic tidal currents) are typically 10% at the hub heights (i.e., the relevant depth) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the turbulent kinetic energy (TKE) spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of TKE, which is shown to balance with shear production. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics. The results are relevant to estimating the performance and fatigue of tidal turbines.
|
|
|
|
Underwater noise measurements of a 1/7th scale wave energy converter Bassett, C., J. Thomson, B. Polagye, and K. Rhinefrank, "Underwater noise measurements of a 1/7th scale wave energy converter," In Proceedings, MTS/IEEE OCEANS 2011, Waikoloa, 19-22 September, doi:110.1109/OCEANS.2010.5664380 (MTS/IEEE, 2011). |
|
More Info
| |
|
22 Sep 2011
|
|
|
|
|
Field measurements of the underwater acoustic signature of Columbia Power Technologies (Columbia Power) SeaRay wave energy converter (WEC) prototype are presented. The device was deployed in the vicinity of West Point (Puget Sound, Washington State) at a depth of approximately 20 meters. The 1/7th scale SeaRay prototype is a heave and surge, point absorber secured to the seabed with a three-point mooring. Acoustic measurements were made in order to satisfy permit requirements and assure that marine life is not adversely affected. A series of one-minute hydrophone recordings were collected on March 30, 2011 for approximately 4 hours. During these recordings, significant wave height varied from 0.4 to 0.7 m, peak wave periods varied from 2.9 to 3.2 seconds, and southerly winds varied from 5 to 10 m s-1. These are approximately twice the amplitude of typical operating conditions for the SeaRay in Puget Sound. Shipping vessel and ferry traffic levels also were typical. Received sound pressure levels during the experiment vary from 116 to 132 dB re 1 µPa in the integrated bands from 20 Hz to 20 kHz. At times, ship traffic dominates the signal, as determined from spectral characteristics and vessel proximity. Received sound pressure levels attributed to the WEC cycle from 116 to 126 dB re 1 µPa in the integrated bands from 60 Hz to 20 kHz at distances from 10 to 1500 m from the SeaRay. The cycling is well correlated with the peak wave period, including peaks and harmonics in the pressure spectral densities. Masking by ship noise prevents rigorous extrapolation to estimate the WEC source level at the conventional 1 m reference.
|
|
|
|
Characterizing underwater noise at a proposed tidal energy site in Puget Sound Bassett, C., J. Thomson, and B. Polagye, "Characterizing underwater noise at a proposed tidal energy site in Puget Sound," In Proceedings, MTS/IEEE Oceans 2010, 20-23 September, doi:10.1109/OCEANS.2010.5664380 (MTS/IEEE, 2010). |
|
More Info
| |
|
20 Sep 2010
|
|
|
|
|
Ambient underwater acoustics data are presented for one year at a potential tidal energy site in Admiralty Inlet, WA (USA) with maximum currents exceeding 3 m/s. The site, at a depth of approximately 60 meters, is located near shipping lanes, a local ferry route, and a transit area for many cetacean species. A key finding is that the statistical distribution of total sound pressure levels are dependent on tidal currents at the site. Pseudosound, cobbles shifting on the sea bed, and vibrations induced by forces on the equipment are possible explanations. Non-propagating turbulent pressure fluctuations, termed pseudosound, can mask ambient noise, especially in highly energetic environments suitable for tidal energy development.
A statistical method identifies periods during which changes in the mean and standard deviation of the one-third octave band sound pressure levels are statistically significant and thus suggestive of pseudosound contamination. For each deployment, recordings with depth averaged tidal currents greater than 1 m/s are found to be contaminated, and only recordings with currents below this threshold are used in the subsequent ambient noise analysis. Mean total sound pressure levels (0.156 - 30 kHz) over all recordings are 117 dB re 1 micoPa. Total sound pressure levels exceed 100 dB re 1 microPa 99% of the time and exceed 135 dB re 1 microPa 4% of the time. Commercial shipping and ferry traffic are found to be the most significant contributors to ambient noise levels at the site, with secondary contributions from rain, wind, and marine mammal vocalizations. Post-processed data from an AIS (Automatic Identification System) receiver is used to determine the location of ships during each recording.
|
|
|
|
Limits to the predictability of tidal current power Polagye, B., J. Epler, and J. Thomson, "Limits to the predictability of tidal current power," In Proceedings, MTS/IEEE Oceans 2010, Seattle, 20-23 September doi:10.1109/OCEANS.2010.5664588 (MTS/IEEE, 2010). |
|
More Info
| |
|
20 Sep 2010
|
|
|
|
|
The predictability of tidal currents in the context of hydrokinetic power generation are assessed using current data from a series of surveys in Admiralty Inlet, Puget Sound, Washington, USA. Both current speed and kinetic power density are shown to be well-described by harmonic analysis. Three challenges to predictability are identified. First, non-sinusoidal fluctuations over time scales on the order of hours are observed but cannot be replicated by conventional harmonic analysis. Second, turbulent fluctuations over time scales on the order of seconds are relatively large and inherently unpredictable. Third, for this site, predictions may not be extrapolated more than 100 m from the location of measurement. While none of these issues are insurmountable, they contribute to a degree of unpredictability for tidal hydrokinetic power.
|
|
|
|
Quantifying turbulence for tidal power applications Thomson, J., M. Richmond, B. Polagye, and V. Durgesh, "Quantifying turbulence for tidal power applications," In Proceedings, MTS/IEEE OCEANS 2010, Seattle, 20-23 September, doi:10.1109/OCEANS.2010.5664600 (MTS/IEEE, 2010). |
|
More Info
| |
|
20 Sep 2010
|
|
|
|
|
Using newly collected data from a tidal power site in Puget Sound, WA, metrics for turbulence quantification are assessed and discussed. Of particular interest is the robustness of the "turbulent intensity," defined as the ratio of velocity standard deviation to velocity mean. Simultaneously, the quality of raw ping Acoustic Doppler Current Profiler (ADCP) data for turbulence studies is evaluated against Acoustic Doppler Velocimeter (ADV) data at a point. Removal of Doppler noise from the raw ping data is shown to be a crucial step in turbulence quantification. Excluding periods of slack tide, the corrected turbulent intensity estimates at a height of 4.6 m above the seabed are 10% and 11% from the ADCP and ADV, respectively. Estimates of the turbulent dissipation rate are more variable, from 10-3 to 10-1 W/m3. An example analysis of coherent Turbulent Kinetic Energy (TKE) is presented.
|
|
|
|
Shipboard acoustic Doppler current profiler surveys to assess tidal current resources Epler, J. B. Polagye, and J. Thomson, "Shipboard acoustic Doppler current profiler surveys to assess tidal current resources," In Proceedings, MTS/IEEE Oceans 2010, Seattle, 20-23 September, doi:10.1109/OCEANS.2010.5664387 (MTS/IEEE, 2010). |
|
More Info
| |
|
20 Sep 2010
|
|
|
|
|
A compelling aspect of power generation from tidal currents is the predictability of the resource, which is generated by the gravitational pull of the sun and moon on the earth's oceans. For technical feasibility studies, it is presupposed that once the currents at a site have been well characterized it is possible to make accurate predictions of the electricity that would be generated by an array of turbines. These data are generally collected by Acoustic Doppler Current Profilers (ADCP), which use active acoustics to measure currents throughout the water column.
Stationary ADCP deployments in Admiralty Inlet, WA, indicate operationally important variability over length scales less than 100 m and use of shipboard ADCP surveys aims to identify regions of peak currents without deploying a high resolution grid of stationary ADCPs. Shipboard surveys involve multiple laps during a tidal cycle around a short "racetrack". Data are aggregated within bins such that multiple laps produce time series at 100 m spatial resolution along the track. The time series is then fitted with a half sine wave assuming that each tidal cycle can be represented as such due to the periodic nature of tidal currents. The amplitude and timing of the peak currents along the survey track are estimated from the fit. Multiple ebb current surveys indicate that relative amplitude trends are consistent between cycles of differing strength and time of the year. Therefore, by overlapping surveys, greater spatial coverage can be achieved from multiple cycles without changing the survey characteristics.
Results obtained to date suggest a noise floor of approximately plus/minus 15 minutes for phase. This method could be applied to other tidal energy sites as a lower cost alternative to siting studies using arrays of stationary ADCPs.
|
|
|
Recent News Articles
|
|
|
Beyond the forecast: Power play KING5 News, Seattle Washington State is on the forefront of green energy production, including harnessing winds, tides, and sunlight to produce electricity. |
|
23 Nov 2013
|
|
|
|
|
Sounds of the sea: Stones clanging Inside Science, Joel N. Shurkin Tide-borne pebbles on the seabed can drown out other ocean noises. According to research by Christopher Bassett and colleagues published in the Journal of Geophysical Research, the noise from gravel on the seabed is significant to the overall undersea soundscape. |
|
21 May 2013
|
|
|
|
|
A tide of local influences The New York Times Scientist at Work Blog, Jim Thomson Principal Oceanographer Jim Thomson blogs from the Canal de Chacao in Chile. His research team is measuring the tidal turbulence in the channel to determine if the area is suitable for power generating turbine installation. |
|
27 Feb 2013
|
|
|
|
|
Ocean energy is a vast, unproven resource The Kitsap Sun Jim Thomson, a University of Washington researcher, is studying the potential energy that can be produced at Admiralty Inlet and the potential environmental effects. When the project started three years ago, almost nothing was known about that area of Puget Sound, he said. |
|
9 Nov 2011
|
|
|
|
|
IBM sees energy, money in motion of the ocean MSNBC, John Roach APL-UW's Jim Thomson is helping characterize the noise environment in Admiralty Inlet in Washington's northern Puget Sound for a pilot project with a local utility that will install underwater turbines to capture energy from the tides. |
|
1 Nov 2011
|
|
|
|
|
Renewable tidal energy's reality check CNN Money Jim Thomson and his research team have been collecting data for nearly three years at a potential undersea tidal energy site in Admiralty Inlet. The data will inform the best practices for harnessing tidal energy at the site when the turbines are lowered to the bottom and connected to the power grid. |
|
20 Oct 2011
|
|
|
|
|
Harnessing tides in the northwest KUOW Radio The sun is setting as the Jack Robertson, a 65-foot research vessel, leaves the harbor. Two spidery-looking orange pieces of machinery, each one weighing about 1,000 pounds, crouch on the back deck. These sea spiders, as they're called, are for measuring tidal currents and more. |
|
24 Aug 2011
|
|
|
|
|
Will oceans' tides supply endless electricity? Bellingham Herald, Rob Hotakainen, McClatchy Newspapers Two large hydro turbines will be installed 200 feet deep in the harsh waters of Admiralty Inlet by late summer 2013, marking the first project of its kind in Washington state. But before then, scientists want to figure out how rockfish, diving birds, whales and other marine life will respond to the intruding turbines. |
|
6 Aug 2011
|
|
|
|
|
Admiralty Inlet ocean life studied to accommodate potential undersea turbine generators Peninsula Daily News, Charlie Bermant Four submerged data collection devices were retrieved in Admiralty Inlet off the shore of Whidbey Island on Wednesday as scientists prepare to monitor ocean life around turbine electrical generators. |
|
9 Jun 2011
|
|
|
|
|
Is tidal energy affecting sea life? KING 5 News, Gary Chittim Revolutionary efforts to harness the power of Puget Sound tides took a big step forward today. Sophisticated imaging devices have been hard at work studying the possible effects of large scale underwater energy production. They are looking at how a grid of generators might harm sensitive sea life including endangered salmon and orcas. |
|
8 Jun 2011
|
|
|
|
|
Tidal power: another blessing from Puget Sound? Crosscut.com, Erik Neumann The big Snohomish Public Utility District will seek federal permission to install tidal power turbines in Admiralty Inlet. |
|
31 Mar 2011
|
|
|
|
|