Benjamin Cohen Research Data Analyst bcohen@apl.uw.edu Phone 206-685-2262 |
Department Affiliation
Polar Science Center |
Education
B.S. Earth & Space Sciences (Physics Concentration), University of Washington - Seattle, 2018
Publications |
2000-present and while at APL-UW |
Characterizing southeast Greenland fjord surface ice and freshwater flux to support biological applications Moon, T.A., B. Cohen, T.E. Black, K.L. Laidre, H.L. Stern, and I. Joughin, "Characterizing southeast Greenland fjord surface ice and freshwater flux to support biological applications," Cryosphere, 18, 4845-4872, doi:10.5194/tc-18-4845-2024, 2024. |
More Info |
29 Oct 2024 |
|||||||
Southeast Greenland (SEG) is characterized by complex morphology and environmental processes that create dynamic habitats for top marine predators. Active glaciers producing solid-ice discharge, freshwater flux, offshore sea ice transport, and seasonal landfast-ice formation all contribute to a variable, transient environment within SEG fjord systems. Here, we investigate a selection of physical processes in SEG to provide a regional characterization that reveals physical system processes and supports biological research. SEG fjords exhibit high fjord-to-fjord variability regarding bathymetry, size, shape, and glacial setting, influencing some processes more than others. For example, during fall, the timing of offshore sea ice formation near SEG fjords progresses temporally when moving southward across latitudes, while the timing of offshore sea ice disappearance is less dependent on latitude. The rates of annual freshwater flux into fjords, however, are highly variable across SEG, with annual average input values ranging from ~1 x 108 to ~1.25 x 1010 m3 (~0.112.5 Gt) for individual fjords. Similarly, the rates of solid-ice discharge in SEG fjords vary widely partly due to the irregular distribution of active glaciers across the study area (6070°N). Landfast sea ice, assessed for eight focus fjords, is seasonal and has a spatial distribution highly dependent on individual fjord topography. Conversely, glacial ice is deposited into fjord systems year-round, with the spatial distribution of glacier-derived ice depending on the location of glacier termini. As climate change continues to affect SEG, the evolution of these metrics will vary individually in their response, and next steps should include moving from characterization to system projection. Due to the projected regional ice sheet persistence that will continue to feed glacial ice into fjords, it is possible that SEG could remain a long-term refugium for polar bears and other ice-dependent species on a centennial to millennial scale, demonstrating a need for continued research into the SEG physical environment. |
Narwhal (Monodon monoceros) associations with Greenland summer meltwater release Laidre, K.L. M.J. Zahn, M. Simon, M. Ladegaard, K.M. Stafford, E. Phillips, T. Moon, H.L. Stern, and B. Cohen, "Narwhal (Monodon monoceros) associations with Greenland summer meltwater release," Ecosphere, 15, doi:10.1002/ecs2.70024, 2024. |
More Info |
14 Oct 2024 |
|||||||
Climate change is rapidly transforming the coastal margins of Greenland. At the same time, there is increasing recognition that marine-terminating glaciers provide unique and critical habitats to ice-associated top predators. We investigated the connection between a top predator occupying glacial fjord systems in Northwest Greenland and the properties of Atlantic-origin water and marine-terminating glaciers through a multiyear interdisciplinary project. Using passive acoustic monitoring, we quantified the summer presence and autumn departure of narwhals (Monodon monoceros) at glacier fronts in Melville Bay and modeled what glacier fjord physical attributes are associated with narwhal occurrence. We found that narwhals are present at glacier fronts after Greenland Ice Sheet peak summer runoff and they remain there during the period when the water column is becoming colder and fresher. Narwhals occupied glacier fronts when ocean temperatures ranged from 0.6 to 0.8°C and salinities between 33.2 and 34.0 psu at around 200 m depth and they departed on their southbound migration between October and November. Narwhals' departure was approximately 4 weeks later in 2019 than in 2018, after an extreme 2019 summer heatwave event that also delayed sea ice formation by 2 months. Our study provides further support for the niche conservative narwhal's preference for cold ocean temperatures. These results may inform projections about how future changes will impact narwhal subpopulations, especially those occupying Greenland glacial fjords. |
Glacial ice supports a distinct and undocumented polar bear subpopulation persisting in late 21st-century sea-ice conditions Laidre, K.L. and 18 others including E.V. Regehr, B. Cohen, and H.L. Stern, "Glacial ice supports a distinct and undocumented polar bear subpopulation persisting in late 21st-century sea-ice conditions," Science, 376, 1333-1338, doi:10.1126/science.abk2793, 2022. |
More Info |
17 Jun 2022 |
|||||||
Polar bears are susceptible to climate warming because of their dependence on sea ice, which is declining rapidly. We present the first evidence for a genetically distinct and functionally isolated group of polar bears in Southeast Greenland. These bears occupy sea-ice conditions resembling those projected for the High Arctic in the late 21st century, with an annual ice-free period that is >100 days longer than the estimated fasting threshold for the species. Whereas polar bears in most of the Arctic depend on annual sea ice to catch seals, Southeast Greenland bears have a year-round hunting platform in the form of freshwater glacial mélange. This suggests that marine-terminating glaciers, although of limited availability, may serve as previously unrecognized climate refugia. Conservation of Southeast Greenland polar bears, which meet criteria for recognition as the world’s 20th polar bear subpopulation, is necessary to preserve the genetic diversity and evolutionary potential of the species. |
In The News
'Wholly unexpected': These polar bears can survive with less sea ice The New York Times, Henry Fountain The overall threat to the animals from climate change remains, but a new finding suggests that small numbers might survive for longer as the Arctic warms. See related articles on the UW News pinboard. |
16 Jun 2022
|
Newly documented population of polar bears in Southeast Greenland sheds light on the species' future in a warming Arctic UW News, Hannah Hickey Scientists have documented a previously unknown subpopulation of polar bears living in Southeast Greenland. The polar bears survive with limited access to sea ice by hunting from freshwater ice that pours into the ocean from Greenland’s glaciers. |
16 Jun 2022
|