Dana Manalang Senior Principal Engineer manalang@uw.edu Phone 206-685-9910 |
Biosketch
Dana Manalang is a Principal Engineer in the APL-UW Electronics and Photonic Systems Department. She has held key roles in system development, testing, commissioning, and operations programs across multiple industries including ocean instrumentation, wireless sensor networks, semiconductor processing equipment, and defense.
She earned a B.S. in Ocean Engineering at Florida Institute of Technology and received her M.S.E.E from UC Berkeley. Before joining APL-UW in 2009, Dana was the Lead AUV Systems Engineer at Fugro Seafloor Surveys. She currently manages instrument operations and maintenance for the OOI Cabled Array.
Department Affiliation
Electronic & Photonic Systems |
Education
B.S. Ocean Engineering, Florida Institute of Technology, 1998
M.S. Electrical Engineering, University of California, Berkeley, 2000
Videos
Using a Wave Energy Converter for UUV Recharge This project demonstrates the interface required to operate, dock, and wirelessly charge an uncrewed underwater vehicle with a wave energy converter. |
More Info |
11 Apr 2022
|
|||||||
Uncrewed underwater vehicles (UUVs) predominantly use onboard batteries for energy, limiting mission duration based on the amount of stored energy that can be carried by the vehicle. Vehicle recharge requires recovery using costly, human-supported vessel operations. The ocean is full of untapped energy in the form of waves that, when converted to electrical energy by a wave energy converter (WEC), can be used locally to recharge UUVs without human intervention. In this project we designed and developed a coupled WEC-UUV system, with emphasis on the systems developed to interface the UUV to the WEC. |
Sharing Science: ROPOS and the Underwater Volcano Dana Manalang and Hunter Hadaway share the inspiration and creation of their children's book about a robot that takes young readers on a deep sea journey. |
5 Nov 2018
|
Publications |
2000-present and while at APL-UW |
A unified simulation framework for wave energy powered underwater vehicle docking and charging Chen, M., R. Vivekanandan, C.J. Rusch, D. Okushemiya, D. Manalang, B. Robertson, and G.A. Hollinger, "A unified simulation framework for wave energy powered underwater vehicle docking and charging," Appl. Energy, 361, doi:10.1016/j.apenergy.2024.122877, 2024. |
More Info |
1 May 2024 |
|||||||
As wave energy conversion technology advances, recharge of autonomous underwater vehicles has emerged as a promising application for this at-sea power. We bring together an interdisciplinary team to create a simulation framework linking hydrodynamic modeling, autonomous docking and navigation algorithms, and a power tracking model to better understand how a full wave energy converterautonomous underwater vehicle system could be modeled. A floating point absorber wave energy converter is modeled and analyzed under various wave conditions. We incorporate three different dock designs, using the modeled dock motion and simulated wave-induced currents to test our autonomous docking algorithm. We couple the output of this algorithm to the hydrodynamic model to simulate autonomous docking. This shows that docking with a floating third body is successful in most sea states, while a dock rigidly mounted to the wave energy converter presents difficulty for autonomous docking. Finally, we incorporate a power model to better understand the feasibility and capabilities of a wave energy converterunderwater vehicle system in simulated wave environments. This shows that this system is comfortably supported in the majority of sea states, and provides an estimate of the on-board power storage required to maximize vehicle mission time. |
Adaptive wireless power for subsea vehicles Manalang, D., B. Waters, C. Smith, P. LaMothe, M. Carlson, and K.D. Yan, "Adaptive wireless power for subsea vehicles," Mar. Technol. Soc. J., 56, 36-44, doi:10.3389/fphar.2022.1062979, 2022. |
More Info |
14 Oct 2022 |
|||||||
Wireless power transfer in seawater removes the inherent risks and complexities of mating conductive surfaces in seawater. An effective underwater wireless power transfer system for subsea vehicles must maintain power transfer despite the potential for dynamic misalignment between the power transmission and receive elements and therefore requires an adaptive system. We describe the development and characterization of a subsea wireless power system, including a transmit-receive coil pair optimized for seawater performance. Built on the adaptive resonant wireless power transfer technology of WiBotic, Inc., the system automatically adjusts for misalignment and separation between the transmit and receive coils. We demonstrate that transmit-receive coil pairs can be effectively tuned to provide adaptive wireless power transfer in salt water, with no significant effects of increased pressure at depth. Furthermore, we describe the full system marinization of the wireless power system and its application to a system that uses a wave energy converter for subsea vehicle charging. |
Multi-stressor observations and modeling to build understanding of and resilience to the coastal impacts of climate change Newton, J., P. MacCready, S. Siedlecki, D. Manalang, J. Mickett, S. Alin, E. Schumacker, J. Hagen, S. Moore, A. Sutton, and R. Carini, "Multi-stressor observations and modeling to build understanding of and resilience to the coastal impacts of climate change," Oceanography, 34, 86-87, 2022. |
7 Jan 2022 |
In The News
New UW-authored children's book offers a robot's-eye view of the deep ocean UW News, Hannah Hickey After years working on a cabled observatory that monitors the Pacific Northwest seafloor and water above, APL-UW engineer Dana Manalang decided to share the wonder of the deep sea with younger audiences. |
12 Oct 2018
|
New deep-sea pressure sensor could monitor dangerous undersea faults IEEE Spectrum, Amy Nordrum A marine geophysicist and electronic engineer from the University of Washington are now testing a new self-calibrating pressure sensor that could be deployed on the seafloor as a low-cost, long-term way to monitor seismic activity. |
12 Oct 2017
|
Hacking a pressure sensor to track gradual motion along marine faults UW News, Hannah Hickey Engineers at the UW Applied Physics Laboratory modified an existing Paros pressure sensor. The sensitive quartz crystal that measures the seafloor pressure can now be connected to measure pressure inside its titanium instrument case, with a known pressure and another barometer to check the value. |
21 Sep 2017
|